
Verification of Restricted EA-Equivalence

for Vectorial Boolean Functions

Lilya Budaghyan and Oleksandr Kazymyrov

Department of Informatics, University of Bergen,
P.O.Box 7803, N-5020 Bergen, Norway

{Lilya.Budaghyan,Oleksandr.Kazymyrov}@uib.no

Abstract. We present algorithms for solving the restricted extended
affine equivalence (REA-equivalence) problem for any m-dimensional
vectorial Boolean functions in n variables. The best of them has com-
plexity O(22n+1) for REA-equivalence F (x) = M1 ·G(x⊕V2)⊕M3 ·x⊕V1.
The algorithms are compared with previous effective algorithms for solv-
ing the linear and the affine equivalence problem for permutations by
Biryukov et. al [1].

Keywords: EA-equivalence, Matrix Representation, S-box, Vectorial
Boolean Function.

1 Introduction

Vectorial Boolean functions play very important role in providing high-level se-
curity for modern ciphers. They are used in cryptography as nonlinear combining
or filtering functions in the pseudo-random generators (stream ciphers) and as
substitution boxes (S-boxes) providing confusion in block ciphers. Up to date
an important question of generation of vectorial Boolean functions with optimal
characteristics to prevent all known types of attacks remains open. Sometimes
equivalence (i.e. EA or CCZ) is used for achieving necessary properties without
losing other ones (i.e. δ-uniformity, nonlinearity) [2].

But very often inverse problem occurs: it is needed to check several functions
for equivalence. For instance, when finding a new vectorial Boolean function it is
necessary to verify whether it is equivalent to already known ones as it happens
with some of block ciphers, where several substitutions are used, (i.e. ARIA [3] or
Kalyna [4,5]). The complexity of exhaustive search for checking EA-equivalence

for functions from F
n
2 to itself equals O

(
23n

2+2n
)
. When n = 6 the complexity

is already 2120 that makes it impossible to perform exhaustive computing.
In the paper [1] Alex Biryukov et al. have shown that in case when given func-

tions are permutations of Fn
2 , the complexity of determining REA-equivalence

equals O
(
n2 · 2n) for the case of linear equivalence and O

(
n · 22n) for affine

equivalence. In this paper we consider more general cases of REA-equivalence
for functions from F

n
2 to F

m
2 and specify results, when complexity can be reduced

to polynomial. The complexities of our algorithms and the best previous known
ones are given in Table 1.

F. Özbudak and F. Rodŕıguez-Henŕıquez (Eds.): WAIFI 2012, LNCS 7369, pp. 108–118, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Verification of Restricted EA-Equivalence for Vectorial Boolean Functions 109

Table 1. Best Complexities for Solving REA-equivalence Problem

Restricted EA-equivalence Complexity m G(x) Source

F (x) = M1 ·G(M2 · x) O
(
n2 · 2n) m = n Permutation [1]

F (x) = M1 ·G(M2 · x⊕ V2)⊕ V1 O
(
n · 22n) m = n Permutation [1]

F (x) = M1 ·G(x⊕ V2)⊕ V1 O
(
22n+1

)
m ≥ 1 † Sec. 3

F (x) = M1 ·G(x⊕ V2)⊕ V1 O
(
m · 23n) m ≥ 1 Arbitrary Sec. 3

F (x) = G(M2 · x⊕ V2)⊕ V1 O (n · 2m) m ≥ 1 Permutation Sec. 3

F (x) = G(x⊕ V2)⊕M3 · x⊕ V1 O (n · 2n) m ≥ 1 Arbitrary Sec. 3

F (x) = M1 ·G(x⊕ V2)⊕M3 · x⊕ V1 O
(
22n+1

)
m ≥ 1 ‡ Sec. 3

F (x) = M1 ·G(x⊕ V2)⊕M3 · x⊕ V1 O
(
m · 23n) m ≥ 1 Arbitrary Sec. 3

† - G is under condition {2i | 0 ≤ i ≤ m− 1} ⊂ img(G′) where G′(x) = G(x) +G(0).
‡ - G is under condition {2i | 0 ≤ i ≤ m− 1} ⊂ img(G′) where G′ is defined as (4).

2 Preliminaries

For any positive integers n and m, a function F from F
n
2 to F

m
2 is called dif-

ferentially δ-uniform if for every a ∈ F
n
2 \ {0} and every b ∈ F

m
2 , the equation

F (x) + F (x+ a) = b admits at most δ solutions [6]. Vectorial Boolean functions
used as S-boxes in block ciphers must have low differential uniformity to allow
high resistance to differential cryptanalysis (see [7]). In the important case when
n = m, differentially 2-uniform functions, called almost perfect nonlinear (APN),
are optimal (since for any function δ ≥ 2). The notion of APN function is closely
connected to the notion of almost bent (AB) function [8] which can be described
in terms of the Walsh transform of a function F : Fn

2 �→ F
m
2

λ(u, v) =
∑
x∈F

n
2

(−1)v·F (x)+u·x,

where ”·” denotes inner products in F
n
2 and F

m
2 , respectively. The set

{λ(u, v) | (u, v) ∈ F
n
2 × F

m
2 , v �= 0} is called the Walsh spectrum of F and

the set ΛF = {|λ(u, v)| | (u, v) ∈ F
n
2 × F

m
2 , v �= 0} the extended Walsh spectrum

of F . If n = m and the Walsh spectrum of F equals {0,±2
n+1
2 } then the function

F is called AB [8]. AB functions exist for n odd only and oppose an optimum
resistance to linear cryptanalysis (see [9]). Every AB function is APN but the
converse is not true in general (see [10] for comprehensive survey on APN and
AB functions).

The natural way of representing F as a function from F
n
2 to F

m
2 is by its

algebraic normal form (ANF):

∑
I⊆{1,...,n}

aI

(∏
i∈I

xi

)
, aI ∈ F

m
2 ,

(the sum being calculated in F
m
2 ). The algebraic degree deg(F ) of F is the degree

of its ANF. F is called affine if it has algebraic degree at most 1 and it is called
linear if it is affine and F (0) = 0.



110 L. Budaghyan and O. Kazymyrov

Any affine function A : Fn
2 �→ F

m
2 can be represented in matrix form

A(x) = M · x⊕ C, (1)

where M is an m × n matrix and C ∈ F
m
2 . All operations are performed in F2,

thus (1) can be rewritten as

⎛
⎜⎜⎝

a0
a1
. . .

am−1

⎞
⎟⎟⎠

x

=

⎛
⎜⎜⎜⎝

k0,0 · · · k0,n−1

k1,0 · · · k1,n−1

...
. . .

...
km−1,0 · · · km−1,n−1

⎞
⎟⎟⎟⎠ ·

⎛
⎜⎜⎝

x0

x1

. . .
xn−1

⎞
⎟⎟⎠⊕

⎛
⎜⎜⎝

c0
c1
. . .

cm−1

⎞
⎟⎟⎠

with ai, xi, ci, kj,s ∈ F2.
Two functions F,G : Fn

2 �→ F
m
2 are called extended affine equivalent (EA-

equivalent) if there exist an affine permutation A1 of Fm
2 , an affine permutation

A2 of Fn
2 and a linear function L3 from F

n
2 to F

m
2 such that

F (x) = A1 ◦G ◦A2(x) + L3(x).

ClearlyA1 and A2 can be presented asA1(x) = L1(x)+c1 and A2(x) = L2(x)+c2
for some linear permutations L1 and L2 and some c1 ∈ F

m
2 , c2 ∈ F

n
2 .

Definition 1. Functions F and G are called restricted EA-equivalent (REA-
equivalent) if some elements of the set {L1(x), L2(x), L3(x), c1, c2} are in {0, x}.
There are two special cases

– linear equivalence when {L3(x), c1, c2} = {0, 0, 0};
– affine equivalence when L3(x) = 0.

In matrix form EA-equivalence is represented as follows

F (x) = M1 ·G(M2 · x⊕ V2)⊕M3 · x⊕ V1

where elements of {M1,M2,M3, V1, V2} have dimensions {m × m,n × n,m ×
n,m, n}.

We say that functions F and F ′ from F
n
2 to F

m
2 are CCZ-equivalent if there

exists an affine permutation L of F
n
2 × F

m
2 such that GF = L(GF ′) , where

GH = {(x,H(x)) | x ∈ F
n
2}, H ∈ {F, F ′}. CCZ-equivalence is the most general

known equivalence of functions for which differential uniformity and extended
Walsh spectrum are invariants. In particular every function CCZ-equivalent to an
APN (respectively, AB) function is also APN (respectively, AB). EA-equivalence
is a particular case of CCZ-equivalence [11]. The algebraic degree of a function
is invariant under EA-equivalence but, in general, it is not preserved by CCZ-
equivalence.

3 Verification of Restricted EA-Equivalence

Special types of REA-equivalence, which are considered in this paper, are shown
in Table 2.



Verification of Restricted EA-Equivalence for Vectorial Boolean Functions 111

Table 2. Special types of REA-equivalence

REA-equivalence Type

F (x) = M1 ·G(x)⊕ V1 I

F (x) = G(M2 · x⊕ V2) II

F (x) = G(x)⊕M3 · x⊕ V1 III

F (x) = M1 ·G(x)⊕M3 · x⊕ V1 IV

Hereinafter assume that obtaining the value F (x) for any x takes one step.
Pre-computed values of function F (x), F−1(x) and corresponding substitutions
are used as input for the algorithms. Thereafter, complexity of representing
functions in needed form is not taken into account, as well as memory needed for
data storage. This assumptions are introduced to be able to compare complexities
of algorithms of the present paper with those of [1] where the same assumptions
were made.

There are 2m·n choices of linear mappings. The complexity of obtaining the
m× n matrix M satisfying the equation

F (x) = M ·G(x)

using exhaustive search method is O(2n · 2m·n), where O(2m·n) and O(2n) are
complexities of checking all matrices for all possible x ∈ F

n
2 . Another natural

method is based on system of equations. The complexity in this case depends
only on the largest of the parameters n and m. Indeed, for square matrices we
can benefit from the asymptotically faster Williams method based on system
of equations with complexity O(n2.3727) [12]. Besides, for n ≤ 64 we can use
64-bit processor instructions to bring the complexity to O(n2) because two rows
(columns) can be added in 1 step. Since any system of m equations with n
variables can be considered as a system of k equations with k variables where
k = max{n,m} then the complexity of solving such a system is

μ = O(k2) , (2)

which gives the complexity of finding M by this method.

Proposition 1. Any linear function L : Fn
2 �→ F

m
2 can be converted to a matrix

with the complexity O(n).

Proof. We need to find an m× n matrix M satisfying

L(x) = M · x

Suppose rowsM (i) = (mij) , ∀j ∈ {0, 1, . . . , n − 1} and colsM (j) = (mij) , ∀i ∈
{0, 1, . . . ,m−1} are the i-th row and the j-th column of matrix M , respectively.
Each value of x ∈ {2i | 0 ≤ i ≤ n− 1} is equivalent to a vector with 1 at the i-th
row



112 L. Budaghyan and O. Kazymyrov

20 =

⎛
⎜⎜⎝

1
0
. . .
0

⎞
⎟⎟⎠ 21 =

⎛
⎜⎜⎝

0
1
. . .
0

⎞
⎟⎟⎠ 2n−1 =

⎛
⎜⎜⎝

0
0
. . .
1

⎞
⎟⎟⎠ .

Clearly, every column, except the i-th, becomes zero when multiplying the matrix
M to x = 2i. Hence, each column of matrix M can be computed from

L(2i) = colsM (i), i ∈ {0, 1, . . . , n− 1}.
For finding all columns of M it is necessary to compute n values of L(2i), 0 ≤
i ≤ n− 1. Consequently the complexity of transformation is O(n). ��
Proposition 2. Let F,G : F

n
2 �→ F

m
2 and G′(x) = G(x) ⊕ G(0). Then the

complexity of checking F and G for REA-equivalence of type I equals

– O(2n+1) in case when for any i ∈ {0, . . . ,m − 1} there exists x ∈ F
n
2 such

that G′(x) = 2i;
– O(m · 22n) in case G is arbitrary.

Proof. Let F ′(x) = F (x)⊕ F (0). Then REA-equivalent of type I

F ′(x) ⊕ F (0) = M1 ·G′(x)⊕M1 ·G(0)⊕ V1

can be rewritten in the following form
{
F (0) = M1 ·G(0)⊕ V1

F ′(x) = M1 ·G′(x)
. (3)

In case of G(0) = 0 we get V1 = F (0), but in general it’s necessary first to findM1

from equation F ′(x) = M1 ·G′(x). If the set {2i | 0 ≤ i ≤ m− 1} is the subset of
the image set of G′, then the problem of finding m×m matrixM1 is equivalent to
the problem of converting linear function to matrix form with additional testing
for all x in F

n
2 . It is possible to find M1 with the complexity O(m) as was shown

in Proposition 1. The complexity of finding the pre-images of G′ of elements
2i, ∀i ∈ {0, . . . ,m − 1} equals O(2n) as well as the complexity of checking
F ′(x) = M1 ·G′(x) for given M1. In cryptography, in most cases 2n 
 m, so the
complexity O(m) can be neglected. Therefore the total complexity of verification
for equivalence of F and G equals O(2n + 2n +m) ≈ O(2n+1).

Let now G be arbitrary and F ′(x)i be the i-th bit of F ′(x). Denote img(G′)
the image set of G′ and uG′ = |img(G′)| the number of elements of img(G′). Let
alsoNG′ be any subset of Fn

2 such that |NG′ | = uG′ and |{G′(a)|a ∈ NG′}| = uG′ .
Then to find M1 it is necessary to solve a system below for all i ∈ {0, . . . ,m−1}

F ′(xj)i = rowsM1(i) ·G′(xj), ∀xj ∈ NG′ , 0 ≤ j ≤ uG′ − 1 ⇔

⇔

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

F ′(x0)i = rowsM1(i) ·G′(x0)

F ′(x1)i = rowsM1(i) ·G′(x1)

. . .

F ′(xuG′−1)i = rowsM1(i) ·G′(xuG′−1)

.



Verification of Restricted EA-Equivalence for Vectorial Boolean Functions 113

For every i, i ∈ {0, . . . ,m − 1}, the complexity of solving the system highly
depends on uG′ and m and equals O(max{uG′ ,m}2) according to (2). Then the
total complexity of finding M1 for all m bits is O(m · max{uG′,m}2). If value
uG′ ≈ 2n, then O(m · 22n). ��
Remark 1. If it is known in advance that functions F and G in Proposition 2 are
REA-equivalent of type I, then the complexity of verification F ′(x) = M1 ·G′(x)
can be ignored and the total complexity for the case {2i | 0 ≤ i ≤ m − 1} ⊂
img(G′) becomes O(2n).

Proposition 3. Let F,G : Fn
2 �→ Fn

2 and G be a permutation. Then the com-
plexity of checking F and G for REA-equivalence of type II is O(n).

Proof. Denote H(x) = G−1(F (x)). Then the equality F (x) = G(M2 · x ⊕ V2)
becomes

H(x) = M2 · x⊕ V2 .

Taking x = 0 we get V2 = H(0) and the equivalence can be represented as
H ′(x) = M2 · x, where H ′(x) = H(x) ⊕H(0). The method and the complexity
of finding n by n matrix M2 are similar to finding the matrix corresponding to
the linear function. Therefore, the complexity equals O(n). ��
Proposition 4. Let F,G : Fn

2 �→ Fm
2 . Then the complexity of checking F and

G for REA-equivalence of type III equals O(n).

Proof. Denote H(x) = F (x) ⊕G(x), then REA-equivalence

F (x) = G(x) ⊕M3 · x⊕ V1

takes the form

H(x) = M3 · x⊕ V1 .

And we have the same situation as in Proposition 3, but with m × n matrix.
Thus the complexity of finding M3 and V1 (or showing its non-existence) equals
O(n). ��
Every vectorial Boolean function admits the form

H(x) = H ′(x) ⊕ LH(x) ⊕H(0) , (4)

where LH is a linear function and H ′ has terms of algebraic degree at least 2.

Proposition 5. Let F,G : Fn
2 �→ Fm

2 and G′ be defined by (4) for G. Then the
complexity of checking F and G for REA-equivalence of type IV equals

– O(2n+1) in case {2i | 0 ≤ i ≤ m− 1} ⊂ img(G′),
– O(m · 22n) in case G is arbitrary.



114 L. Budaghyan and O. Kazymyrov

Algorithm 1. Checking Functions for REA-equivalence of Type IV

Input: F ′(x), LF (x), F (0), G′(x), LG(x),G(0)
Output: True if F is EA-equivalent to G
for V2 = 0 to 2n do

H ′(x)← G′(x⊕ V2);
LH(x)← LG(x⊕ V2);
H(0)← G(V2);
for i = 0 to m− 1 do

x ← 2i;
find(2i == G(y));
SetColumn(M1,i,H(y));

end for
V1 ← M1 ·H(0)⊕ F (0);
for i = 0 to n− 1 do

x ← 2i;
SetColumn(M3,i,LF (x)⊕M1 · LH(x));

end for
for i = 0 to 2n − 1 do

if F (x) != M1 ·H (x⊕ V2)⊕M3 · x⊕ V1 then
goto next V2;

end if
end for
return True

end for
return False

Proof. Using (4) REA-equivalence of type IV can be rewritten as

F ′(x)⊕ LF (x)⊕ F (0) = M1 ·G′(x) ⊕M1 · LG(x)⊕M3 · x⊕M1 ·G(0)⊕ V1

and gives the system of equations

⎧⎪⎨
⎪⎩

F ′(x) = M1 ·G′(x)
LF (x) = M1 · LG(x) ⊕M3 · x
F (0) = M1 ·G(0)⊕ V1

It’s easy to see that for a given M1 one can easily compute M3 and V1 from the
second and the third equations of the system. The first equation of the system
leads to the two different cases for the function G′ considered in Proposition 2.
Hence, according to Proposition 2, the total complexity for finding G′ equals
O(2n+1) and O(m · 22n), respectively. It should be noted that the complexity of
finding the matrix M3 is not taken into account since 2n+1 
 n. ��
If we add one of V1, V2 values to REA-equivalence, then the complexity will
increase in 2m or 2n times respectively. REA-equivalance with V1, V2 and corre-
sponding complexities are shown in Table 1. It should be mentioned that types
I and III of REA-equivalence are particular cases of type IV. But taking into



Verification of Restricted EA-Equivalence for Vectorial Boolean Functions 115

account different restrictions for the function G it is necessary to check all these
types of EA-equivalence.

The presented methods of verification of REA-equivalence were checked using
the free open source mathematical software system Sage [13]. An example of a
program for the most general case (type IV) of REA-equivalence in case {2i | 0 ≤
i ≤ m− 1} ⊂ img(G′) is shown in Appendix A. The corresponding algorithm is
presented in Algorithm 1.

4 Conclusions

The present paper studies complexities of checking functions for special cases
of EA-equivalence and it is shown that for some of this cases the complexity
of checking takes polynomial time. Obtained results give a practical method
for checking functions on equivalence. The best result is with the complexity
O(22n+1) for checking REA-equivalence of the form F (x) = M1 · G (x⊕ V2) ⊕
M3 · x⊕ V1 under some condition on G.

References

1. Biryukov, A., De Canniere, C., Braeken, A., Preneel, B.: A Toolbox for Cryptanal-
ysis: Linear and Affine Equivalence Algorithms. In: Biham, E. (ed.) EUROCRYPT
2003. LNCS, vol. 2656, pp. 33–50. Springer, Heidelberg (2003)

2. Daemen, J., Rijmen, V.: The Design of Rijndael. Springer, Heidelberg (2002)
3. Kwon, D.: New Block Cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003.

LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004)
4. Oliynykov, R., Gorbenko, I., Dolgov, V., Ruzhentsev, V.: Symmetric block cipher

”Kalyna”. Applied Radio Electronics 6, 46–63 (2007) (in Ukrainian)
5. Oliynykov, R., Gorbenko, I., Dolgov, V., Ruzhentsev, V.: Results of Ukrainian

National Public Cryptographic Competition. Tatra Mt. Math. Publ. 47, 99–113
(2010), http://www.sav.sk/journals/uploads/0317154006ogdr.pdf

6. Nyberg, K.: Differentially Uniform Mappings for Cryptography. In: Helleseth, T.
(ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 55–64. Springer, Heidelberg (1994)

7. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

8. Chabaud, F., Vaudenay, S.: Links between Differential and Linear Cryptanalysis.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

9. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

10. Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Crama, Y., Hammer,
P. (eds.) Chapter of the Monography Boolean Models and Methods in Mathemat-
ics, Computer Science, and Engineering, pp. 398–469. Cambridge University Press
(2010)

11. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations
suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15(2), 125–
156 (1998)

12. Williams, V.V.: Breaking the Coppersmith-Winograd barrier (November 2011),
http://www.cs.berkeley.edu/~virgi/matrixmult.pdf

13. Stein, W.A., et al.: Sage Mathematics Software (Version 4.8.2), The Sage Devel-
opment Team (2012), http://www.sagemath.org

http://www.sav.sk/journals/uploads/0317154006ogdr.pdf
http://www.cs.berkeley.edu/~virgi/matrixmult.pdf
http://www.sagemath.org


116 L. Budaghyan and O. Kazymyrov

A Source Code for Verification of REA-equivalence of
Type IV

1 #!/ usr/bin/env sage

3 # Global v a r i a b l e s
b i t s=0

5 length=0
k=0

7 P=0

9 def check rEA4 (F,G) :
r ’ ’ ’

11 Return True i f
− F(x ) = M1 ∗ G(x ) + M3 ∗ x + V

13 − G’( x ) i s permutation , where G(x ) = G’( x ) + L G(x) + G(0)
’ ’ ’

15 M1 = matrix (GF(2 ) , nrows=b i t s , n c o l s=b i t s )
M3 = matrix (GF(2 ) , nrows=b i t s , n c o l s=b i t s )

17
polF = F

19 polG = G

21 V1 = polF . c o n s t a n t c o e f f i c i e n t ( )
V2 = polG . c o n s t a n t c o e f f i c i e n t ( )

23
polF += V1

25 polG += V2

27 V1 = V1 . i n t e g e r r e p r e s e n t a t i o n ( )
V2 = V2 . i n t e g e r r e p r e s e n t a t i o n ( )

29
polFc=polF . c o e f f s ( )

31 polFc += [P( ”0” ) for i in xrange ( length−l e n ( polFc ) ) ]
polGc=polG . c o e f f s ( )

33 polGc += [P( ”0” ) for i in xrange ( length−l e n ( polGc ) ) ]

35 L1 = z e r o v e c t o r ( l ength ) . l i s t ( )
L2 = z e r o v e c t o r ( l ength ) . l i s t ( )

37
for i in xrange ( b i t s ) :

39 i f polFc[1<< i ] != 0 :
L1[1<< i ] = polFc[1<< i ]

41 polFc[1<< i ] = 0

43 i f polGc[1<< i ] != 0 :
L2[1<< i ] = polGc[1<< i ]

45 polGc[1<< i ] = 0

47 L1 = P(L1)
L2 = P(L2)

49 polF = P( polFc )
polG = P( polGc )

51
sboxF = range ( l ength )

53 sboxG = range ( l ength )

55 sboxL1 = [ L1 . subs (k (ZZ( i ) . d i g i t s ( 2 ) ) ) . i n t e g e r r e p r e s e n t a t i o n ( )
for i in xrange ( l ength ) ]

sboxL2 = [ L2 . subs (k (ZZ( i ) . d i g i t s ( 2 ) ) ) . i n t e g e r r e p r e s e n t a t i o n ( )
for i in xrange ( l ength ) ]

57 sboxF = [ polF . subs ( k (ZZ( i ) . d i g i t s ( 2 ) ) ) . i n t e g e r r e p r e s e n t a t i o n
( ) for i in xrange ( l ength ) ]

sboxG = [ polG . subs ( k (ZZ( i ) . d i g i t s ( 2 ) ) ) . i n t e g e r r e p r e s e n t a t i o n
( ) for i in xrange ( l ength ) ]

59



Verification of Restricted EA-Equivalence for Vectorial Boolean Functions 117

sboxFt=sboxF [ : ]
61 sboxGt=sboxG [ : ]

63 i f l e n ( s e t ( sboxG) . i n t e r s e c t i o n ( s e t ( [ 2 ˆ g for g in xrange ( b i t s ) ] )
) ) != b i t s :

#pr in t ”>>> sboxG hasn ’ t a l l va lues of {0} <<<”.format ( [2ˆ g
for g in xrange ( b i t s ) ] )

65 return None

67 for i in xrange ( b i t s ) :
x=sboxGt . index(1<< i )

69 M1. set column ( i ,ZZ( sboxFt [ x ] ) . d i g i t s ( base=2,padto=b i t s ) )

71 sboxM = range ( l ength )

73 V = ZZ( (M1∗ vec tor (GF(2 ) ,ZZ(V2) . d i g i t s ( base=2,padto=b i t s ) ) ) . l i s t
( ) ,2) ˆˆ V1

for i in xrange ( l ength ) :
75 sboxM [ i ] = sboxL1 [ i ] ˆˆ ZZ( (M1∗ vec tor (GF(2 ) ,ZZ( sboxL2 [ i ] ) .

d i g i t s ( base=2,padto=b i t s ) ) ) . l i s t ( ) ,2) ˆˆ V

77 sboxT=sboxM [ : ]

79 V = vector (GF(2 ) ,ZZ( sboxT [ 0 ] ) . d i g i t s ( base=2,padto=b i t s ) )

81 i f sboxT [ 0 ] != 0 :
sboxT = [ gˆˆsboxT [ 0 ] for g in sboxT ]

83
for i in xrange ( b i t s ) :

85 x=1<<i
M3. set column ( i ,ZZ( sboxT [ x ] ) . d i g i t s ( base=2,padto=b i t s ) )

87
sbox = range ( l ength )

89
sF = [F . subs (k (ZZ( i ) . d i g i t s ( 2 ) ) ) . i n t e g e r r e p r e s e n t a t i o n ( ) for

i in xrange ( l ength ) ]
91 sG = [G. subs (k (ZZ( i ) . d i g i t s ( 2 ) ) ) . i n t e g e r r e p r e s e n t a t i o n ( ) for

i in xrange ( l ength ) ]

93 for i in xrange ( l ength ) :
sbox [ i ]= vec tor (GF(2 ) ,ZZ(sG [ i ] ) . d i g i t s ( base=2,padto=b i t s ) )

95
sbox [ i ]=M1∗ sbox [ i ]

97
tx=M3∗ vec tor (GF(2 ) ,ZZ( i ) . d i g i t s ( base=2,padto=b i t s ) )

99
sbox [ i ]= vec tor (GF(2 ) , [ ZZ( sbox [ i ] . ge t ( j ) ) ˆˆ ZZ( tx . ge t ( j ) ) ˆˆ

ZZ(V. ge t ( j ) ) for j in xrange ( l e n ( sbox [ i ] ) ) ] )
101

sbox [ i ]=ZZ( sbox [ i ] . l i s t ( ) ,2)
103

i f sbox == sF :
105 return [M1,M3,V]

else :
107 return None

109 def i s EA equ i va l en t (F ,G, f unc t i on s ) :

111 for v2 in xrange ( l ength ) :
polG=G. subs (P( ”x+{0}” . format ( k (ZZ( v2 ) . d i g i t s ( 2 ) ) ) ) ) .mod(P( ”x

ˆ{0}+x” . format ( l ength ) ) )
113

r e t=check rEA4 (F, polG )
115

i f r e t != None :
117 M1=re t [ 0 ]

M3=re t [ 1 ]
119 V1=re t [ 2 ]



118 L. Budaghyan and O. Kazymyrov

V2=vector (GF(2 ) ,ZZ( v2 ) . d i g i t s ( base=2,padto=b i t s ) )
121 i f f un c t i on s == True :

return [M1,V1 ,V2 ,M3]
123 else :

return True
125

return False
127

def main ( argv=None) :
129 global b i t s , length , k ,P

131 b i t s=6
length=1<<b i t s

133 k=GF(2ˆ b i t s , ’ a ’ )
P=PolynomialRing (k , ’ x ’ )

135
F=P. random element ( length −1)

137 G=P. random element ( length −1)

139 # Test polynomials for b i t s=6
#G=P(”aˆ63∗xˆ0 + aˆ61∗xˆ1 + aˆ23∗xˆ2 + aˆ39∗xˆ3 + aˆ15∗xˆ4 + a

ˆ21∗xˆ5 + aˆ57∗xˆ6 + aˆ37∗xˆ7 + aˆ3∗xˆ8 + aˆ23∗xˆ9 + aˆ26∗x
ˆ10 + aˆ40∗xˆ11 + aˆ48∗xˆ12 + aˆ26∗xˆ13 + aˆ51∗xˆ14 + aˆ43∗
xˆ15 + aˆ32∗xˆ16 + aˆ13∗xˆ17 + aˆ33∗xˆ18 + aˆ48∗xˆ19 + a
ˆ36∗xˆ20 + aˆ1∗xˆ21 + aˆ11∗xˆ22 + aˆ40∗xˆ23 + aˆ42∗xˆ24 + a
ˆ62∗xˆ25 + aˆ11∗xˆ26 + aˆ22∗xˆ27 + aˆ5∗xˆ28 + aˆ6∗xˆ29 + a
ˆ59∗xˆ30 + aˆ10∗xˆ31 + aˆ51∗xˆ32 + aˆ4∗xˆ33 + aˆ13∗xˆ34 + a
ˆ63∗xˆ35 + aˆ54∗xˆ36 + aˆ26∗xˆ37 + aˆ58∗xˆ38 + aˆ39∗xˆ39 +
aˆ53∗xˆ40 + aˆ34∗xˆ41 + aˆ28∗xˆ42 + aˆ27∗xˆ43 + aˆ40∗xˆ44 +
aˆ25∗xˆ45 + aˆ10∗xˆ46 + aˆ58∗xˆ47 + aˆ30∗xˆ48 + aˆ34∗xˆ49

+ aˆ35∗xˆ50 + aˆ49∗xˆ51 + aˆ53∗xˆ52 + aˆ35∗xˆ53 + aˆ49∗xˆ54
+ aˆ7∗xˆ55 + aˆ55∗xˆ56 + aˆ39∗xˆ57 + aˆ53∗xˆ58 + aˆ29∗xˆ59
+ aˆ52∗xˆ60 + aˆ45∗xˆ61 + aˆ9∗xˆ62 + aˆ26∗xˆ63”)

141 #F=P(”aˆ44∗xˆ0 + aˆ34∗xˆ1 + aˆ7∗xˆ2 + aˆ5∗xˆ3 + aˆ51∗xˆ4 + a
ˆ40∗xˆ5 + aˆ27∗xˆ6 + aˆ23∗xˆ7 + aˆ28∗xˆ8 + aˆ63∗xˆ9 + aˆ20∗
xˆ10 + aˆ38∗xˆ11 + aˆ12∗xˆ12 + aˆ16∗xˆ13 + aˆ18∗xˆ14 + a
ˆ39∗xˆ16 + aˆ53∗xˆ17 + aˆ62∗xˆ18 + aˆ17∗xˆ19 + aˆ50∗xˆ20 +
aˆ13∗xˆ21 + aˆ15∗xˆ22 + aˆ29∗xˆ23 + aˆ33∗xˆ24 + aˆ12∗xˆ25 +
aˆ22∗xˆ26 + aˆ49∗xˆ27 + aˆ7∗xˆ28 + aˆ43∗xˆ29 + aˆ28∗xˆ30 +
aˆ53∗xˆ31 + aˆ5∗xˆ32 + aˆ59∗xˆ33 + aˆ22∗xˆ34 + aˆ26∗xˆ35 +
aˆ45∗xˆ36 + aˆ39∗xˆ37 + aˆ49∗xˆ38 + aˆ9∗xˆ39 + aˆ58∗xˆ40 +
aˆ13∗xˆ41 + aˆ14∗xˆ42 + aˆ43∗xˆ43 + aˆ61∗xˆ44 + aˆ38∗xˆ45

+ aˆ10∗xˆ46 + aˆ9∗xˆ47 + aˆ25∗xˆ48 + aˆ44∗xˆ49 + aˆ30∗xˆ50
+ aˆ12∗xˆ51 + aˆ16∗xˆ52 + aˆ24∗xˆ53 + aˆ56∗xˆ54 + aˆ3∗xˆ55
+ aˆ40∗xˆ56 + aˆ23∗xˆ57 + aˆ49∗xˆ58 + aˆ39∗xˆ59 + aˆ58∗xˆ60
+ aˆ11∗xˆ61 + aˆ55∗xˆ62 + aˆ29∗xˆ63”)

143 print ”F\ t= {0}” . format (F)
print ”G\ t= {0}” . format (G)

145
r e t=i s EA equ iva l en t (F ,G, f unc t i on s=True )

147
i f r e t != Fal se :

149 [M1,V1 ,V2 ,M3]= re t
print ”EA\ t\ t\ t\ t= {0}” . format (True )

151 print ”V1:\n{0}” . format (V1)
print ”V2:\n{0}” . format (V2)

153 print ”M1:\n{0}” . format (M1)
print ”M3:\n{0}” . format (M3)

155 else :
print ”EA\ t\ t\ t\ t= {0}” . format ( Fal se )

157
i f name == ” ma in ” :

159 sys . e x i t (main ( ) )


	Verification of Restricted EA-Equivalence for Vectorial Boolean Functions
	Introduction
	Preliminaries
	Verification of Restricted EA-Equivalence
	Conclusions
	References




