Extended Criterion for Absence of Fixed Points
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Abstract. One of criteria for substitutions used in block ciphers is the absence of fixed points.
In this paper we show that this criterion must be extended taking into consideration a mixing key
function. In practice, we give a description of AES when fixed points are reached. Additionally,
it is shown that modulo addition 2" has advantages comparing with the XOR operation.
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1 Introduction

Substitution boxes (S-boxes) map an n-bit input message to an m-bit output message.
They provide confusion in symmetric algorithms. For different tasks S-boxes are used
in various forms. In stream ciphers a substitution is represented usually as a vectorial
Boolean function [1|. Permutations are a subclass of substitutions and are commonly
used in block ciphers as lookup tables. Regardless of ciphers an S-box can be converted
from one form to another one.

Substitutions must satisfy various criteria to be resistant against different types of
attacks [2]. A substitution satisfying all criteria is perfect. However, such substitutions
do not exist nowadays. Therefore, in practice, substitutions satisfying several impor-
tant criteria are used. They are called optimal S-boxes. Optimality criteria vary from
cipher to cipher. Generating permutations with optimal criteria is a quite difficult task,
especially for large n and m. The problem of generating a set of S-boxes with similar
properties can be particularly solved by using EA- or CCZ-equivalence [3,4].

One of the criteria is absence of fixed points. It is used in many ciphers for increasing
resistance against statistical attacks [5]. Designers of modern cryptographic primitives
try to get rid of the fixed points. This is achieved by applying affine equivalence, which
is a special case of FA-equivalence. The S-box of advanced encryption standard (AES)
was constructed using this technique |5, 6]. However, application of this method does
not totally prevent the appearance of fixed points. In this paper we show an isomorphic
(equivalent) form of AES when fixed points are reached.

Two ciphers E; and E; are isomorphic to each other if there exist invertible maps
x> ad Py gl and y i k' — K such that y' = E;(2', k') and 3/ = E;(27, k)
are equal for all z*, k%, 7 and k7 [7,8]. Obviously, the cipher can have a lot of isomorphic
basic transformations as well as full encryption procedures. The cipher BES is a well-
known example of isomorphic AES [9]. Another example is the description of encryption
procedure using system of equation of degree 2 [10]. We give one more description of
AES which includes a substitution with a fixed point while almost all transformations
are unmodified.



2 Preliminaries

Arbitrary substitution can be represented at least in three different forms: algebraic
normal form (ANF), over field Fy» and as a lookup table. Most of substitutions used
in block ciphers have a table representation because of simplicity of description and
understanding [11]. Meanwhile arbitrary S-box can be always associated with a vectorial
Boolean function F in Fy.[z]. For bijective substitutions (i.e., permutations) F is defined
uniquely [1].

A natural way to represent F': 4§ — 5" is an algebraic normal form:

Z ar (sz> , ar € FJ',

IC{1,..n} iel

the sum is being calculated in F3' [1]. The algebraic degree of F' is the degree of its
ANF. F is called affine if it has algebraic degree at most 1, and it is called linear if it is
affine and F'(0) = 0. A vectorial Boolean function represented as a table can be easily
transformed to the ANF form and vice versa.

Two functions F, G : F} — FJ" are called extended affine equivalent (£ A-equivalent)
if there exist an affine permutation A; of F', an affine permutation A, of F} and a
linear function L3 from FY to F3* such that

F(x) = A; 0 Go Ay(x) + Ls(x). (1)

Clearly, A; and A, can be presented as A;(z) = Li(z) + ¢; and As(z) = Lo(x) + o
for some linear permutations L; and L, and some ¢; € F3', ¢ € Fy. Two functions F
and G are linear equivalent if equation (1) is hold for Ls(z) =0, ¢; = 0, cg = 0. If the
equation (1) is preserved only for Ls(x) = 0, then functions F' and G are called affine
equivalent [12].

In the binary matrix form EA-equivalence is represented as follows

Flz)=M -G(My -2 & Vo) & My -28 Vi

where elements of {M;, My, M3, V;,Va} have dimensions {m x m,n x n,m X n,m,n}
[3].

An element a € Fy is a fixed point of F' : Fy — FJ' if F(a) = a. The absence of
fixed points criterion is defined as follows.

Definition 1. A substitution must not have fized points, i.e.
F(a) #a, YaeT7.

For any positive integers n and m, a function F' from F} to F7' is called differentially
d-uniform if for every a € Fj \ {0} and every b € F3', the equation F(z) + F(x +
a) = b admits at most § solutions [1]. Vectorial Boolean functions used as S-boxes in
block ciphers must have a low differential uniformity to be resistant against differential
cryptanalysis [13].

The nonlinearity criterion is closely connected to the notion of the Walsh transform
which can be described as the function

)\(u7 U) = Z (_1)U~F(:r)+u-m,

z€Fy
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Fig. 1. A General Structure of An Iterative Block Cipher

where "-" denotes inner products in Fy and F3' respectively [1]. A substitution has
an optimal resistance to linear cryptanalysis if the maximum absolute value of Walsh
coefficients is small [14]. Substitutions with the smallest value of A(u,v) exist for odd
n only.

These two criteria are major while selecting substitutions for new ciphers. However,
there are many others criteria like propagation criterion, absolute indicator, correlation
immunity, strict avalanche criterion, etc [1,2]. It has been still not proven the impor-
tance of many criteria for block ciphers. For example, the substitution used in AES
does not satisfy most of them [15]. Moreover, no theoretical or practical attacks were
proposed on modern block ciphers based on these criteria.

Let £ : {0,1} x {0,1}*¥ — {0,1} be a function taking a key K of length k bits
and an input message (plaintext) M of length [ bits and return an output message
(ciphertext) E(M, K). For each key K let Ex : {0,1}" — {0, 1} be a function defined by
Ex(M) = E(M, K). Then E is a block cipher if Ex and E;' are efficiently computable
and Ff is a permutation for every K.

Most of the modern block ciphers are iterative (Fig. 1). Usually a round function is
run multiple times with different parameters (round keys). An arbitrary iterative block
cipher can be mathematically described as follows

s

EK<M) = kar-H © H(sz) © [Wk1<M)7

=2

where R is a round procedure, IWW is a prewhitening procedure and PW is a post-
whitening procedure. In Fig. 1 a key schedule is an algorithm that takes a master key
K as input and produces the subkeys ky, ks, ..., k.41 for all stages of an encryption
algorithm.



A mixing key procedure of a block cipher is an algorithm which injects a round
key into an encryption procedure. In the majority of modern block ciphers, the mixing
key function is implemented as the exclusive or (XOR) operation because of the low
implementation cost.

3 A Brief Description of AES

AES is a block cipher based on the substitution permutation network (SPN). It supports
a fixed block size of 128 bits and a key size of 128, 192 or 256 bits [6]. The number of
rounds depends on the key size and is equal to 10, 12 or 14, respectively. The round
function consists of four functions: AddRoundKey (o), SubBytes (), ShiftRows ()
and MixColumns (#).
The entire encryption algorithm is described as follows (Fig. 2)
Ex(M) = o1,,, o050 [ (o, 000w 09) 0 01, (M),

=2

AddRoundKey

Ciphertext

Fig. 2. The Encryption Algorithm of AES

The SubBytes transformation processes the state of the cipher using a nonlinear
byte substitution table that operates on each of the state bytes independently [6]. The
S-box of AES was generated by finding the inverse element in the field Fos followed by
applying affine polynomial. In terms of equation (1) the transformation has the form

F(z)=Ai(z™") = Li(z™") + 1.

The substitution table generated by the vectorial Boolean function F' satisfies the
following criteria:



— the maximum value of non-trivial XOR difference transformation probability is 27¢,
— the maximum absolute value of linear approximation probability bias is 274,
— the minimum algebraic degree of the component functions is 7 [5, 16].

It should be noticed that the chosen polynomial 2! allows to describe the S-box and

the entire cipher by overdefined system of equations of degree 2 [17]. But in the same
time it is resistant to differential, linear and many other cryptanalytical methods. In
addition to the general properties, the constant of the AES S-box has been chosen in
such a way that it has no fixed points [5].

The MixColumns transformation takes all the columns of the state and mixes their
data (independently of one another) to produce new columns [6]. This transformation
can be represented in different ways. One of them is the matrix multiplication over Fos.
For an input state z and 4 x 4 matrix M the output state y of the transformation is
described as

y=M -z

A matrix with the maximum distance separable (MDS) property is used in AES. In
terms of Rijndael the MDS property is associated with a branch number (/)

f = min(W(z) + W(y)),
where W(z) is the byte weight of a vector z.

From the definition of an MDS matrix it is known that the maximum value of
for m by m matrix is m + 1 [11, 18]. Hence, MDS matrices have the perfect diffusion
property for byte-oriented ciphers.

Multiplication by a constant in a field Fs» is a linear transformation with respect to
XOR, so it preserves the linear property [9]

O(x+y) =0(x) + 0(y).

The ShiftRows transformation processes the state by cyclically shifting the last three
rows of the state by different offsets [6]. More precisely, row i is moved to the left by
¢ byte positions for 0 < ¢ < 3. The ShiftRows is also a linear function that preserves
7(x 4+ y) = w(x) + 7 (y) property.

Both MixColumns and ShiftRows help to ensure that the number of active S-boxes
is large even after a few rounds [5]. These functions are the basis of protection offered
by the AES against differential and linear cryptanalysis.

The AddRoundKey transformation is the mixing key function in which a round key
is added to the state using the XOR operation. The length of a round key is equal to the
size of the state. XORing of two n-bit length vectors a and b can be performed bit by
bit n times. Therefore, the AddRoundKey operation of AES can be done independently
for each byte.

4 A New Cipher Isomorphic to AES

There exist several examples of ciphers isomorphic to AES. For example, the big en-
cryption system (BES) describes AES over Fos [9]. On the other hand, the cipher AES
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can be also represented as the system of multivariate equations of the 2nd degree over
Fy [17]. These two examples are based on the algebraic features of the substitution.
However, there exists another approach, which takes into account the linear properties
of the basic functions (MixColumns and ShiftRows).

The cipher AES is based on Rijndael that was proposed by Daemen and Rijmen to
the AES competition [19]. Authors have used design simplicity principle, which leads
to performance improvements and a code compactness of the cipher on a wide range of
platforms. To increase decryption performance of software implementation they have
used precomputed lookup tables and the linear properties of the basic functions.

The original decryption algorithm for arbitrary ciphertext C' mathematically can be
represented as follows (Fig. 3(a)) (6]

T

DK<C) =0k, © 771 or lo H(eil OO0k, _;19 © 771 © ﬂﬁl) © ak7'+1<C>’

=2

To use precomputed tables it is necessary to transform the decryption round function
to the similar one of encryption algorithm. Since functions v~ and 7=! can be computed
independently they have the commutative property 7' o7n ! = 771 o471 [5,9]. In
Section 3 it was stated that functions #~! and o are linear with respect to XOR, hence

—1 _ —1
0" o Ok—ita = 06~ (ky_it2) © 0.
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Fig. 4. Isomorphic Representations of AES
Thus, the whole decryption algorithm has the form (Fig. 3(b))

Dg(C) =0 om oy to H(U9’1(kr—i+2) o tor oy ooy, (0).
=2

The use of such elementary transformations helps to achieve a significant acceleration
of the decryption procedure due to the isomorphic properties of the round function [5].

Obviously, the same technique can be applied to the encryption algorithm. However,
the task for an adversary is to find a representation of the cipher that has a new substitu-
tion with a fixed point. It is assumed that all round keys are generated by KeySchedule,
but it has been excluded from the further figures to simplify the description. Then the
encryption procedure takes the form (Fig. 4(a))

.
Ex(M)=mo0 (k) 070 H(9 O O Tp1og-1(k;) © ) © Ok (M).
i=2

The above equation shows that the final ShiftRows operation is redundant and can
be ignored in many attacks. As it was stated above the presence of this function is very
important for the fast implementation of the decryption procedure.

Arbitrary permutation S can be represented as a vectorial Boolean function F' :
Fan + Fyn that has the form [3]

F(z) = F'(z) + F(0).

Since the characteristic of the field is 2, the constant can be moved to the round keys.
Let ¢ be a function that XORs the constant F'(0) with all bytes of a state. If the



round keys 77100~ 0 £(k;) are denoted by k! then encryption procedure takes the form
(Fig. 4(b))

T

Ex(M) =70 0ntog(k,.1) 07 © H(G 0O oy ov') ooy, (M),

=2

where 7/ is the SubBytes transformation with the substitution of the form F(x) =
L(z™1).

Fig. 4(b) shows that the structure of the cipher remains unchanged. It is obvious
that if an adversary finds a round key for modified cipher she also automatically obtains
corresponding round key of the original cipher because of an bijective mapping of the
keys k; and k.. Moreover, the new substitution F(z) = L(z~!) has the fixed point at
x = 0. Consequently, the isomorphic substitution of AES doesn’t satisfy the absence of
fixed points criterion.

Described features of the cipher appears from the fact that the operation XOR
is linear with respect to MixColumns and ShiftRows. If one replaces AddRoundKey
with a nonlinear function (i.e., addition modulo 2") then it will be impossible to find
an isomorphic cipher of such a form. This is because the ShiftRows and MixColumns
transformations are become nonlinear with respect to addition modulo 2". From the
isomorphic point of view a mixed key function based on a modulo addition is crypto-
graphically stronger than a function based on the XOR operation .

Furthermore, fixed points are directly connected with cyclic properties of substitu-
tions. Inserting an invertible linear function (7) into the encryption procedure gives a
new isomorphic cipher (Fig. 5(a)). Herewith, 7 becomes a part of a round key and a
new substitution, and 77! is united with 7 (Fig. 5(b)). The cyclic properties of the new
substitution will depend on the selected function 7.

Thereby, the cyclic and the absence of fixed points properties of a substitution can
be controlled by an adversary in the case of a linear mixing key function. A new criterion
for substitutions follows from the isomorphic properties.

Proposition 1. Substitutions Sy, S, ..., S, used in a nonlinear layer must belong to
different classes of equivalence.

Clearly, if substitutions are in the same class (i.e., EA-equivalent) then an adversary
can find an isomorphic cipher which consists of one substitution and a modified linear
layer. Consequently, there will be no advantages to use multiple substitutions. The
criterion has to be considered both at the design stage of new ciphers and in the
analysis of existing ones [20,21]. Since CCZ-equivalence is the most general case of
known equivalences, it makes sense to check whether substitutions belong to different
CCZ-equivalent classes.

5 Conclusions

It was shown that the absence of fixed points criterion works only for the case when an
S-box is considered as a separate function. However, it is possible to find representations
of ciphers which do not meet this criterion. The new method of the AES description
allows to reconsider some of the criteria for substitutions from the practical point of
view. This may be exploited by in future attacks.
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Fig. 5. A Modified AES with an Invertible Linear Function
Since an invertible linear function can be added to an encryption procedure, an

adversary can control both the cyclic and absence of fixed points properties of substi-
tutions. It follows from the isomorphic representations that the mixing key function
based on a modulo addition has more advantages comparing with the XOR operation.

Isomorphism of ciphers leads to reconsideration of application of multiple substi-

tutions. On the one hand the proposed criterion excludes the possibility to find an
isomorphic representation where only one substitution will be used. On the other hand
in cryptoprimitives with multiple substitutions the opposite criterion can be applied to
increase the performance.
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