Algebraic Attacks Using Binary Decision Diagrams

Havard Raddum! and Oleksandr Kazymyrov?

TSimula@UiB, *University of Bergen
Norway

Abstract. Algebraic attacks have been developed against symmetric primitives during the last
decade. In this paper we represent equation systems using binary decision diagrams, and explain
techniques for solving them. Next, we do experiments with systems describing reduced versions
of DES and AES, as well as systems for the problem of determining EA-equivalence. We compare
our results against Grébner basis and CryptoMiniSat.

Keywords: binary decision diagram, block cipher, algebraic attack, symmetric primitives

1 Introduction

Comparing the complexity of finding the key to a cryptosystem with solving a system of
equations were first mentioned by Claude Shannon [1], and is today known as algebraic attacks.
The main idea is to describe an encryption scheme via a system of equations and solve it.
However, algebraic attacks against cryptographic primitives began to develop actively only in
the early 2000s. Several methods to attack hash functions, stream and block ciphers have been
described [2-10].

In the middle of the 20th century, it was proposed to use binary decision diagrams (BDDs)
for representing Boolean functions [11, 12]. This representation has several advantages. Many
logical operations on BDDs can be implemented by polynomial-time graph manipulation algo-
rithms [12], and the memory consumption can be extremely low, even for very complex Boolean
functions. Most modern cryptographic primitives are based on binary logic because of the large
spread of binary computers. Therefore, the description of cryptographic transformations using
Boolean or vectorial Boolean functions is an easy task.

Several attacks based on BDDs exist for stream ciphers. Their efficiency was demonstrated
both for general methods and for particular cases on A5/1, EO and Trivium [13,14]. In this
paper we extend previous results on block ciphers and present new specific strategies and
approaches for solving systems of equations based on BDDs.

We apply the proposed methods on DES with reduced number of rounds, on MiniAES (a
small variant of Rijndael) and on the problem of determining EA-equivalence. Our experiments
on DES allow us to break six rounds in approximately one minute on a MacBook Air 2013.
This is a factor 220 improvement over the best earlier algebraic attack on DES using MiniSAT
[5]. There have been several earlier attempts to break MiniAES |7, 15, 16]. Approaches that
exploit the short key in MiniAES (only 16 bits) succeed very quickly, but the general methods
of F4 and XL/XSL failed to solve systems representing more than one round of MiniAES.
The approach we use in this paper does not exploit the short key, while still solving systems
representing 10 rounds of MiniAES using approximately 45 minutes and 8GB of memory.

The rest of the paper is organized as follows. Section 2 explains BDDs and the fundamental
operations we do on them. Section 3 describes our approach to solving BDD systems, and
introduces some solving strategies. Section 4 gives the details and results of our algebraic attack

against DES and MiniAES as well as the EA-equivalence problem, comparing complexities
against SAT-solver and Grébner base techniques. Finally, Section 5 concludes the paper and
give some directions for further research.

2 Binary Decision Diagram Fundamentals

The literature discusses several variants of BDDs. For clarity we will always mean a zero-
suppressed, reduced, and ordered BDD in this paper. A comprehensive treatment of BDDs can
be found in [12]. In this section we only give a brief description with emphasis on visualization
and our use of a BDD.

2.1 Binary Decision Diagrams

A BDD is a directed acyclic graph. Exactly one node in the graph, called the source node, has
no incoming edges, and exactly one node in the graph, called the sink node, has no outgoing
edges. All nodes except for the sink node are called internal nodes, and have one or two
outgoing edges, called the 0-edge and/or the 1-edge. In most other descriptions of BDDs, each
internal node is associated with a variable. In this paper each internal node will be associated
with a linear combination of variables. There are no edges between nodes associated with
the same linear combination.

When visualizing a BDD, we draw the graph from top to bottom, with the source node
on top, the sink node at the bottom, and all edges directed downwards. All internal nodes
are organized in horizontal levels between the sink and source nodes. One level consists of all
nodes associated to one particular linear combination, and we write the linear combination
to the left of the level. Dotted edges indicate 0-edges while solid lines indicate 1-edges. An
example of a BDD with four levels associated with linear combinations in four variables is
shown in Fig. 1.

x1 +x2
X0 + x2+ x3

x2 +x3

Fig. 1: Example of a BDD with four levels.

In the literature there are various ways to understand a BDD. Some interpret a BDD to
represent a family of sets while others see a BDD as an efficient encoding of a Boolean function.
In this paper we put emphasis on the fact that a path from the source to the sink node assigns
values to the linear combinations of the levels. If we choose the b-edge (b € {0,1}) out from
a node, we assign the value b to the linear combination associated with the level of the node.
Any path from the source to the sink node gives values to the linear combinations and can be
regarded as a right-hand side in a system of linear equations.

2.2 Representing an S-box as a BDD

We are interested in finding a BDD that represents a given S-box with n input bits and m
output bits. Let the input bits and output bits of the S-box be xzg,...,z,—1 and yo, ..., Ym—-1,
respectively. Let the first n levels be associated with xg, ..., z,—1 (29 for the source node and
xn—1 for level n), and build a complete binary tree from xg to x,_;. Next, assign yo, ..., Ym—1
to the m lowest levels (with yo at the highest of these), and build a complete binary tree
upwards from the sink node to the yg-level, branching in 0-edges and 1-edges. Then there will
be only one path from a given node at the yg-level to the sink node. There will be 2™ nodes at
the yo-level, each representing a unique path to the sink node, assigning values to yo, . . ., Ym—1-

Any path from the source node down to level xz,, 1 will assign values to the input bits
xQ, - .-, Tp—2. Selecting a 0-edge or a l-edge out of a node at the x,_1-level will complete the
assignment of input bits. This edge is connected to the node at the yg-level whose unique path
to the sink node will give the correct output of the S-box. Joining all nodes at the x,_1-level
to all nodes at the yp-level in this way will complete the construction of the BDD. Fig. 2 shows
an example of a BDD representing a 4 x 4 S-box.

x0
x1
X2

x3

Fig.2: BDD representing the S-box {5,C,8,F,9,7,2,B,6,A,0,D,E,4,3,1}.

2.3 Basic Operations on a BDD

We must be able to run the reduction algorithm [17] on a BDD, bringing the BDD into a
reduced state. The reduction algorithm basically merges nodes representing equivalent Boolean
functions, thus minimizing the number of nodes in the BDD. For a fixed order of the linear
combinations, a reduced BDD is unique. There are two other operations that forms the core
of linear absorption (explained later). Both were described in [18|, but we repeat them briefly
here for completeness.

Swapping levels. This operation swaps the linear combinations at two adjacent levels, and
was first described in [19], using single variables. When changing the order of the levels, nodes
and edges must be re-arranged in the BDD to preserve the underlying function. Fortunately,
swapping levels is a local operation, meaning that only nodes and edges at the two involved
levels need to be touched while the rest of the BDD remains intact. The time complexity of
swapping two levels is linear in the number of nodes on the highest level, but the number of
nodes on the lowest level may double in the worst case.

After swapping two levels, the BDD may not be in the reduced state, and it may be
necessary to run the reduction algorithm. Hence, the number of nodes in the BDD after
swapping two levels may increase or decrease. By repeatedly swapping levels one may put the
set of linear combinations for the levels into any desired order. Finding the order of levels that
give the fewest nodes is an NP-complete problem [20].

Adding levels. Traditionally, the levels in a BDD have been associated with single variables
and not linear combinations. It has therefore not been natural to think of “adding” one level
onto another. This changes when we have linear combinations associated with the levels. If
l; and [y are two linear combinations associated to two adjacent levels (I; above ly), we are
interested in replacing lo with I3 + ls. The algorithm for adding levels was first described in
[18], and follows the same logic as with swapping levels. Nodes and edges at the levels for
[1 and [must be rearranged to preserve the underlying function, but the rest of the BDD
remains the same. The complexity is similar to swapping, and the number of nodes at the new
level associated to l; + l2 may double in the worst case. The reduction algorithm should be
run after adding levels to make sure the BDD remains in a reduced state.

3 Solving Systems of Equations with Linear Absorption

By repeatedly swapping and adding linear combinations, we can essentially do all linear op-
erations on the linear combinations of the BDD. We can, for instance, perform Gaussian
elimination on the set of linear combinations. As will become clear in the following, a barrier
to find a solution to a system of equations arises when there are dependencies among the linear
combinations of the levels in a BDD. We overcome this problem by using linear absorption.
The technique was first described in [18], but we include an example of the procedure here as
it is central in our approach to solve non-linear equation systems.

3.1 Absorbing One Linear Dependency

The attentive reader will have noticed that the linear combinations in the example BDD in
Section 2.1 are not independent. If we label them ly,11,l2,13 from top to bottom we have
lop +la + I3 = 0. Thus, when we select a path in the BDD and create the corresponding linear
system of equations, we may or may not get a consistent system. If the values assigned to [y, lo
and [3 sum to 0 we get a solution, if not, the system is inconsistent. We use linear absorption
to remove all paths that yield inconsistent systems as follows.

First, swap lp and /1 to obtain the BDD in Fig. 3a. Next, use addition of linear combinations
to add [y onto I, and obtain the BDD in Fig. 3b. Finally, we use addition again to add Iy + o
to 3. This creates the O-vector as linear combination for the lowest level, resulting in the BDD
shown in Fig. 3c.

When selecting a path in the BDD now, it does not make sense to choose a 1-edge out of
a node on the level associated with 0. Such a path would yield a “0 = 17-assignment. Hence
we can delete all outgoing 1-edges from the nodes at the 0-level. Now we are certain that
any remaining path will yield a system of linear equations that is consistent with the linear
dependency ly + lo + I3 = 0.

Moreover, the whole level associated with 0 can be removed. It is easy to show that the
Boolean function represented by a node on this level is equal to the function for the node
pointed to by the 0-edge. Hence, all nodes on the 0-level can be merged with their children
along the 0-edge, and the level disappears. We say that the linear dependency g+ lo + I3 =0
has been absorbed. The resulting BDD for our example is shown in Fig. 3d.

In general, the removal of 1-edges from a level associated with the O-vector may create
internal nodes with no incoming edges. We call these orphan nodes as they have no parents.
After absorbing one linear dependency, all orphan nodes, and subgraphs only reachable through
an orphan node, should be removed as part of the reduction procedure.

If there are several dependencies among the linear combinations in a BDD, we can easily
find all and absorb them one after another. When all dependencies have been absorbed, we
know that any remaining path in the BDD will give a consistent linear system of equations,
which in turn is solved to find the values of the actual variables.

X1 +x2
X0
X0+ X2+ X3
X2 +x3
(a) Swapping (b) Adding (¢) Adding (d) Removing
lo and [q. lo to ls. lo+ 12 tols 0-level

Fig. 3: Absorbing one linear dependency.

3.2 Building and Solving Equation Systems as BDDs

It is rather straight-forward to build a system of equations representing a cryptographic primi-
tive as a set of BDDs. For an encryption algorithm, the user-selected key bits become variables.
We also look at the cipher blocks between the rounds of the primitive. We assign variable names
to the bits between rounds, such that the input and output bits of all non-linear components
can be written as linear combinations of variables.

For each non-linear component we then construct the corresponding BDD, like explained
for S-boxes in Section 2.2. We replace the x; and y; with the linear combinations actually
occuring in the cipher. After this we are left with a set of BDDs with linear combinations from
the same pool of variables.

To proceed with finding a solution to the system we must join the BDDs together. There
exist algorithms for joining two BDDs [17][12, p. 16|, but they are somewhat complex, and
assume single variables associated with the levels. We do it in a much simpler way:

— To join two BDDs, just replace the sink node of one with the source node of the other.

With this simple operation, we can easily string together some or all BDDs in a system and
get fewer, or only one, BDD(s) in the set. If we join all BDDs together, finding a solution is
equivalent to finding a path in the joined BDD that gives a right hand side yielding a consistent
linear system. As can be expected, for interesting systems there will be many dependencies
among the linear combinations in a fully joined BDD, so finding a path respecting all these
dependencies is not trivial. We can, however, try to handle this problem with linear absorption,
and if we can absorb all linear dependencies in the BDD we know that any remaining path
will give a consistent linear system. The algorithm for solving a system of BDDs can then be
summed up as:

1. Join BDDs.
2. Absorb all linear dependencies.
3. Select path and solve resulting system of linear equations.

3.3 Complexity

The first and third steps in the general solving algorithm are easy (assuming a modest number
of BDDs and variables, which is the case even for full scale ciphers). Hence the second step
must be hard if our cryptographic primitives are to remain secure. What we get when joining
all BDDs together is a very long and very slim BDD, basically just a string of many small
BDDs. The number of nodes at one level may double when adding or swapping two linear
combinations, and after absorbing a whole linear dependency the total number of nodes may, in
the worst case, double. This seems to lead to exponential growth in the number of dependencies
absorbed, but in practice the number of nodes after absorbing a linear dependency is very far
from doubling. Remember, the number of nodes may also decrease when applying a swap or
an add operation.

If we expect a unique or only a few solutions, the BDD after absorbing all dependencies
will have only one or a few paths. A BDD with only one path has only one node at each
level, tied together with a string of 0- and 1l-edges. Since all the systems we are interested
in have very few solutions, we know that the number of nodes must decrease sharply before
the last dependencies are absorbed. This means we will always reach some tipping point when
absorbing dependencies, where the number of nodes in the BDD starts to decrease.

We take as our measure of complexity the largest number of nodes that a BDD contained
during linear absorption. This is a measure of memory complexity, and is not equivalent to
the time it takes to solve a system. On the other hand, there is no guessing involved in our
solving method, and no operations that must be repeated an exponential number of times.
Memory rather than time is the resource that constrains us. With 8GB of RAM it is hard to
find a system where our solver runs for over an hour without either finishing or running out of
memory. Therefore, we believe the largest number of nodes we had during the solving process
is the most meaningful measure of complexity.

3.4 Solving strategies

When joining together many BDDs and absorbing all linear dependencies, the solving com-
plexity depends heavily on the order the BDDs are joined. Finding the ordering of BDDs that

gives the minimum complexity is probably a hard problem. During our experiments we have
not found a strategy for ordering that is universally best. However, we describe here some
strategies for how to join and absorb with the aim to keep the complexity down.

Automatic Ordering. This is a default strategy, that can be applied to any system and does
not require any deeper understanding of how the BDDs have been made. The procedure is to
look for the subset of BDDs with the smallest total number of nodes, that still contains some
dependencies. When this subset is found, we join these BDDs and absorb all dependencies.
The number of BDDs in the set will then decrease by at least one, and we repeat the procedure
until there is only one BDD left and all dependencies have been absorbed.

Divide-and-Conquer. This strategy takes the approach that it is always easy to join a few
BDDs together and absorb all dependencies. To solve the system though, one sooner or later
has to join all BDDs, and absorb all remaining dependencies. The assumption is that the true
complexity of solving the system will only appear when all BDDs are joined. Thus we would
like to have only a minimum of dependencies left when we are forced to join all BDDs together.

The divide-and-conquer strategy is to split the system in two (roughly) equally large halves,
such that there are many dependencies within each half but only a few that use linear com-
binations from BDDs in both halves. We can then attack each half independently, trying to
absorb all dependencies. If we succeed, we are left with one BDD with only independent linear
combinations in each half. These can now be joined, and we absorb the relatively few remain-
ing dependencies in the full BDD. When attacking one half, we use the Divide-and-Conquer
technique recursively, treating the half as a complete system. The recursion stops when a
“system” only contains one or two of the original BDDs.

Finding the optimal way to split a system in two equally sized parts seems to be a hard
problem in general. However, knowledge of how the system has been constructed can help in
this regard, as we will see with DES.

Finding Good Joining Order by Cryptanalysis. When we are trying to solve a system
representing a cryptographic primitive, analysis of the primitive may help in deciding a good
order of how to join the BDDs. The strategy is simply to decide on an order for the original
BDDs, join all of them into one long BDD, and absorb all linear dependencies. The order of
the BDDs should be such that each linear dependency only involves linear combinations on
levels that are relatively close to each other. Absorbing each linear combination then becomes
a somewhat local operation that only affects a small part of the BDD, keeping the complexity
down.

4 Application of the Algebraic Attack Based on BDDs

This section describes practical aspects and results of the proposed attack on DES and Mini-
AES as well as the time comparison of solving extended affine equivalence (EA) problem using
Grébner basis, CrytoMiniSat and BDD approaches.

4.1 A Practical Attack on Reduced DES

Previous results on solving DES systems can be found in [5] where the authors solve a 6-round
version, and in [21] where DES with 6, 7 and 8 rounds are attacked. In all papers it was
necessary to fix 20+ of the key bits to their correct values for the attacks to work, reducing
the effective key size to at most 36 bits. The actual solving of equation systems was done by
MiniSAT [22].

Our best result is that we can solve a 6-round system using 8 chosen plaintext/ciphertext
pairs without fixing or guessing any variables. The average complexity is 220571 nodes. Solving
the system for 6-round DES with 8 chosen plaintexts takes approximately one minute on a
MacBook Air 2013 with 8GB of memory.

Constructing DES System of Equations. We assume the reader is familiar with the
operations of DES [23]. The only non-linear part of DES is the application of the eight 6 x 4
S-boxes in each round. We assign variables to the output of the S-boxes in each round, except
for the last two whose output can be expressed as linear conbinations of other variables and
ciphertext bits. The key schedule of DES is linear, so we only need to assign variables to the
56 user-selected key bits. After this the input and output bits of each S-box can be expressed
as linear combinations of variables, and we construct a BDD for each S-box as described in
Section 2.2. Each BDD contains approximately 185 nodes after reduction, the eight different
S-boxes vary slightly in size.

Solving Strategy. The solving strategy we found to work best for DES is Divide-and-
Conquer. We then need to divide our system in two equally big halves, and the key schedule
of DES gives a clear hint on how to do this: One half of the 56 key bits only appears in the
inputs to S-boxes 1 — 4, while the other half only appears in the S-boxes 5 — 8. This applies to
all rounds. For each round, we put the BDDs representing S-boxes 1 — 4 into the set Ag, and
the BDDs for S-boxes 5 — 8 into the set By. Then we try to solve Ay and By independently,
using Divide-and-Conquer again. For dividing Ay, we have found (by exhaustive search) that
the best division is to group together the same two S-boxes from odd-numbered rounds, i.e.
S-boxes 1 and 2, and the other S-boxes (3 and 4) from even-numbered rounds, into set A;.
The other BDDs from Ag go into the set By. See Fig. 4 for a sketch of the division used. By
is re-divided similarly, and further divisions are done by exhaustive search on the fly.

Several Plaintexts. When using several plaintext /ciphertext pairs, we build one DES system
for each. These systems will have the same 56 key-bit variables, but variables representing
internal state will, in general, be different for each plaintext. However, if we carefully choose
the difference between the plaintexts we can reuse a lot of internal variables across different
systems. For producing up to eight different plaintexts, we vary only three bits in the left half.
Then the input to the first round will be equal for each text, and the difference in the input
to the second round will only be in three bits. These bits are chosen so they only affect one
S-box each. In the experiments bits 1, 5 and 17 (numbering from 0 through 31) in the left half
were used for generating differences, affecting S-boxes 1, 2 and 5 in the second round. Tracing
differences further we find that we may reuse variables across systems as far as into the fourth
round.

[]
Y
N
™

Fig. 4: Division used for Divide-and-Conquer strategy for DES.

We merge the different systems by joining all BDDs arising from the same S-box in the
same round. As these share the same key variables, and often many other variables as well,
there are many linear dependencies among the levels in the joined BDD. These dependencies
are absorbed, and after this pre-processing we are left with a system of 8 BDDs representing
an r-round version of DES, regardless of the number of chosen plainexts used.

Extracting Linear Equations. When using more than four plainetxts in the experiments,
we observed that the heaviest step while solving did not occur when joining the sets Ay and
By, but rather when joining A; and Bjp. After all dependencies in Ag had been absorbed the
resulting BDD was very slim, with many levels only containing one node.

If a level only has outgoing b-edges (which is often the case with one-node levels) we know
that the associated linear combination is equal to b, (b € {0,1}). We can use this linear
equation to eliminate a variable from the system. Extracting as many linear equations as
possible and eliminating variables after all dependencies in Ay had been absorbed, it became
trivial to absorb all dependencies in By, and the full system.

Results for DES Experiments. We have solved systems representing DES for 4,5 and
6 rounds, using 1 — 8 plaintext/ciphertext pairs. For each choice of rounds and number of
plaintexts we randomly generated and solved 100 systems, recording their complexities. The
minimum, maximum and average (in bold) complexities observed are summarized in Table 1.

There are rather large variations in complexities inside most cells in Table 1. In each cell,
the key and one plaintext were chosen at random for each of the 100 instances, and some
choices give much lower complexity than others. We can not explain the differences, and have
not been able to identify which choices lead to low solving complexity.

4.2 A Practical Attack on Scaled-Down Version of AES

There are many scaled-down versions of the AES cipher (MiniAES). The first one that follows
Rinjdael’s description was proposed in [24]. A few years later Cid et al. analyzed many small
AES variants in |7], and Elizabeth Kleiman tried to attack MiniAES in her master and doctoral
theses [15,25]. Also, an equation system representing MiniAES was solved in [16].

Table 1: Complexities for solving reduced-round DES-systems. Each cell shows the minimum,
average and maximum complexity observed over 100 instances.
texts

1 2 3 4 5 6 7 8

rounds

222651 210800 29281 29585 29.748 29.976 21()‘103 210283
4 222.715 214.506 210.606 210.257 29.805 210.070 210.203 210.381

222.770 217.473 213.006 212029 29892 210.412 210.978 210‘446

219.472 213831 211440 212126 212.289 212.583 212‘749
5 222.110 216.455 213.526 213.995 214.212 214.410 214.704

5 5 5
223.8()o 219.329 210.618 216.633 216.708 2164882 2174414

5
224@06 2224206 2194932
6 224.929 222.779 220.571

=
225.302 224.324 221.915

Description of MiniAES. The constants of our studied encryption model are the block
length (16 bits) and the key size (16 bits). This scaled-down cipher corresponds to AES-128
[26]. In contrast to original AES, the mini version is a nibble (4 bits) oriented cipher with the
state represented as a 2 x 2 matrix. The round function consists of four routines: AddroundKey
(AK}), SubBytes (SB), ShiftRows (SR) and MixColumns (M C'). The encryption algorithm
can be described as

r

Ex(M) = [[(AKy, 0 MC o SRo SB) o AKy, (M),
=1

where 7 is the number of rounds. The substitution and MDS matrix was taken from [24].

Constructing System of BDDs for MiniAES. Unlike DES, MiniAES has non-linear
components in the key schedule. We assign variables to the output of the S-boxes in each
round, except for the last one. Additionally, we have to add 8 extra variables for each round
key, except the first one with 16 bits of the user-selected key. Then the number of BDDs and
variables is equal to 2r + 4r = 6r and (16 + 8r) + 16(r — 1) = 24r, respectively.

Solving Strategy. The best strategy we found for solving the MiniAES systems was to
determine a good order of BDDs by cryptanalysis, join all BDDs and do a full absorption of
all dependencies.

The order was found by carefully studying which variables that appear in each BDD, both
from the key schedule and the encryption function. Variables from the cipher state only appear
in two consecutive rounds. It is therefore clear that the four BDDs from the same round should
be joined close to each other, and also close to the two BDDs from the key schedule producing
the round key used for the round. The BDDs were put together in groups of six this way,
following the rounds of the cipher.

The order of the BDDs in each group was determined by looking at which variables that
appear in each individual BDD. Two BDDs that share many variables should be adjacent in
the final order. After doing this for the four, five and six round versions it became clear that

a pattern emerged for the joining order. This pattern was followed for the higher number of
rounds.

Results for MiniAES Experiments. The complexities for solving MiniAES systems for
various rounds are summed up in Table 2. Of course, MiniAES only has a 16-bit key and
can be broken very fast using for instance CryptoMiniSAT, which essentially does a very
intelligent brute force on the key [27, p. 250-251|. In [16], the authors create the polynomials
for the ciphertext bits using only the user-selected key bits as variables. This results in 16
polynomials in 16 variables containing approximately 2! terms each, that can be solved using
PolyBoRi. Our algorithm does not take advantage of the short key, and should be compared
to the earlier attacks in |7, 15] that also does not exploit the short key.

For each number of rounds we solved 10 different instances, using 1 known plaintext /ci-
phertext pair. We were not able to reduce the complexities by using more pairs. The observed
complexities for one particular number of rounds did not vary, so the minimum, maximum and
average complexities are all the same. We have also changed the S-box and the MixColumn
matrix to see if other choices affected the complexity, but we found the complexity remains
the same for all variants tried.

It has been observed before that for one plaintext/ciphertext pair in scaled-down AES
versions there may be more than one key that encrypts the given plaintext into the given
ciphertext. This was shown in our experiments as well, often we had two, three or even four
solutions to our systems.

Table 2: Complexities of solving MiniAES systems.

Rounds 4 5 6 7 8 9 10
522.404 523.051 523440 524154 924217 924562 524961

Complexity

4.3 Problem of determining EA-equivalence

To get a good comparison against other solvers we have chosen the problem of EA-equivalence
[29]. This problem is interesting in cryptography, and it can be solved via non-linear systems
of equations. There are no special variables in these systems, like key bits, so we get a fair
comparison between CryptoMiniSAT, Grobner bases and the BDD method.

Two functions are EA-equivalent if the following equation holds for all x € GF'(2)"

Flx)=M;-G(My -2 ® Vo) ® Mg -z DV, (1)

where elements of {M;, Ma, M3, Vi, Va} have dimensions {m X m,n X n,m x n,m,n} and M;
and Mj are non-singular [29]. For simplicity, we set n = m. The EA-equivalence problem can
then be formulated as follows:

For giwen functions F,G : GF(2)" — GF(2)" find M, Ma, M3, V1, Va such that (1) holds or
show that such vectors and matrices do not exist.

The variables in the system to be solved are the entries in My, My, M3, Vi and Vs, so the
number of variables is 3n? +2n. The maximum number of equations and a system’s degree can
be calculated theoretically for given F' and G [30]. However, for n < 6 the system can always

be made quadratic by introducing the matrix Mé = Mfl - M3 and the vector le = Mfl %
and add them as additional equations and variables.

For n = 4 and n = 5 the problem of EA-equivalence is tractable, and the complexity
comparison of Grobner basis (GB), CryptoMiniSat (SAT) and proposed approach (BDD) is
presented in Table 3 for five different instances. Unlike the two other methods, CryptoMiniSat
only finds one solution by default. Therefore, we have used the option “n = +infinity” in
CryptoMiniSat to force it to find all solutions and get a fair comparison. For GB we tested
with several options for ordering, with or without using “faugere” option (turning linear algebra
on or off), and with or without parallelization. The smallest observed times we could achieve
are reported below.

Table 3: Time complexity for solving EA-equivalence problem

. Seconds used to solve

#|n|Number of solutions

BDD| GB SAT
1 4 2 24.05 21.30 213‘71
214 60 24.86 .i. 216.77
304 9 93.92 [91.01 | 912.08
4 5 1 210.20 211.43 _
515 155 210-481 4 -

In Table 3 “i” means that the Grobner bases solver implemented in Sage crashes after
several minutes with out-of-memory message, and ‘-~ means that CryptoMiniSat spent more
than 78 hours (2!¥ seconds) without finding a solution [28].

5 Conclusions

In this paper we have explained an approach to build and solve equation systems using binary
decision diagrams and reported on experiments with the method. The best previous results on
algebraic attacks against DES use guessing at least 20 of the key bits. We improved on these
results using BDDs, breaking six rounds of DES without guessing any variables.

For MiniAES we have also received results which are better than the previous algebraic
attacks described in [7] and [15]. According to our experiments a system representing 10 rounds
of MiniAES can be solved in 45 minutes on a ordinary computer using the BDD approach.
However, attacks exploiting the short key have lower complexities. At the same time, the
BDD method is shown to be advantageous compared to Gréobner basis and CryptoMiniSat on
solving the EA-equivalence problem.

These experiments indicate the BDD approach can compete with other methods in applica-
tions which require solving the non-linear equation systems. There are several open questions
to address in future research. Does there exist a generic algorithm giving an order of BDDs that
yield low complexity when applying linear absorption? Is it possible to analytically estimate
the complexity of solving a BDD system of equations, or do we have to actually run the solver
to find out? Which ciphers are most vulnerable against this type of algebraic attacks? We hope
the potential of BDDs in cryptanalysis will be thoroughly examined in future research.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

. Shannon, C.E.,Communication Theory of Secrecy Systems, Bell system technical journal 28, no. 4, pp.

656-715 (1949).

. Raddum, H., Semaev, 1., Solving multiple right hand sides linear equations, Designs, Codes and Cryptog-

raphy, Volume 49, no. 1-3, pp. 147-160, Springer (2008).

Courtois, N.T., Fast algebraic attacks on stream ciphers with linear feedback, CRYPTO 2003, LNCS 2729,
pp. 176-194, Springer (2003).

Courtois, N.T., Bard, G.V., Wagner, D., Algebraic and slide attacks on KeeLoq, Fast Software Encryption
2008, LNCS 5086, pp. 97-115, Springer (2008).

Courtois, N.T., Bard, G.V., Algebraic cryptanalysis of the data encryption standard, Cryptography and
Coding, LNCS 4887, pp. 152-169, Springer (2007).

Helleseth, T., Rgnjom, S., Simplifying algebraic attacks with univariate analysis, Information Theory and
Applications Workshop (ITA), pp. 1-7, IEEE (2011).

Cid, C., Murphy, S, Robshaw, M.JB., Small scale variants of the AES, Fast Software Encryption 2005,
LNCS 3557, pp. 145-162, Springer (2005).

Bard, G.V., Algebraic cryptanalysis, Springer (2009).

Albrecht, M., Algorithmic Algebraic Techniques and Their Application to Block Cipher Cryptanalysis,
University of London, Thesis (2010). http://www.sagemath.org/files/thesis/albrecht-thesis-2010.
pdf.

Daum, M., Cryptanalysis of Hash functions of the MD/-family, Ruhr University Bochum, Thesis (2005).
http://www.cits.ruhr-uni-bochum.de/imperia/md/content/magnus/dissmd4.pdf

Lee, C.Y., Representation of Switching Clircuits by Binary-Decision Programs, Bell Systems Technical
Journal 38, pp. 985-999 (1959).

Knuth, D.E., The Art of Computer Programming Volume 4, Fascicle 1: Bitwise tricks and techniques;
Binary Decision Diagrams, Pearson Education India (2009).

Krause, M., BDD-based cryptanalysis of keystream generators, EUROCRYPT 2002, LNCS 2332, pp. 222—
237, Springer (2002).

Stegemann, D., Extended BDD-based cryptanalysis of keystream generators, Selected Areas in Cryptogra-
phy 2007, LNCS 4876, pp. 17-35, Springer (2007).

Kleiman, E., High Performance Computing techniques for attacking reduced version of AES using XL and
XSL methods, Graduate Theses and Dissertations (2010) http://1ib.dr.iastate.edu/etd/11473
Bulygin, S., Brickenstein, M., Obtaining and Solving Systems of Equations in Key Variables Only for the
Small Variants of AES, Mathematics in Computer Science 3(2), pp. 185-200, BirkhAd user-Verlag (2010)
Bryant, R.E., Graph-based algorithms for boolean function manipulation, IEEE Transactions on Computers,
Volume 35, no. 8, pp. 677-691 (1986).

Schilling, T, Raddum, H., Solving Compressed Right Hand Side Equation Systems with Linear Absorption,
SETA 2012, LNCS 7280, pp. 291-302, Springer (2012).

Rudell, R., Dynamic Variable Ordering for Ordered Binary Decision Diagrams, 1993 IEEE/ACM Interna-
tional Conference on Computer-aided Design, vol. 12, pp. 42-47 (1993).

Bollig, B., Wegener, 1., Improving the variable ordering of OBDDs is NP-complete, IEEE Transactions on
Computers, Volume 45, no. 9, 993-1002 (1996).

Perret, J.C F.L., Spaenlehauer, P.J., Algebraic Differential Cryptanalysis of DES, Western European Work-
shop on Research in Cryptology (2009). http://www.pjspaenlehauer.net/data/papers/DESweworc.pdf
Eén, N., Sérensson, N., An extensible SAT-solver, Theory and Applications of Satisfiability Testing, LNCS
2919, pp. 502-518, Springer (2004).

Data Encryption Standard, Federal Information Processing Standards Publication (FIPS PUB) 46, Na-
tional Bureau of Standards, Washington, DC (1977).

Phan, R. C.-W., Mini advanced encryption standard (Mini-AES): A testbed for cryptanalysis students,
Cryptologia, Volume 26, no. 4, pp. 283-306, Taylor & Francis (2002).

Kleiman, E., The XL and XSL attacks on Baby Rijndael, Master Thesis, lowa State University (2005).
https://orion.math.iastate.edu/dept/thesisarchive/MS/EKleimanMSSS05. pdf

Announcing the Advanced Encryption Standard (AES), Federal Information Processing Standards Publi-
cation 197, United States National Institute of Standards and Technology (NIST) (2001).

Soos, M. , Nohl, K., Castelluccia C., Extending SAT Solvers to Cryptographic Problems, SAT 2009, LNCS
5584, pp. 244 — 257, Springer (2009)

28.

29.

30.

Stein, W., et al.: Sage mathematics software (version 6.2). The Sage Development Team (2014). http:
//www.sagemath.org.

Budaghyan, L., Kazymyrov, O.: Verification of restricted EA-equivalence for vectorial Boolean functions.
In Ozbudak, F., Rodriguez-Henriquez, F. (eds.), Arithmetic of Finite Fields, vol. 7369 of Lecture Notes in
Computer Science, pp. 108-118. Springer Berlin Heidelberg, 2012.

Eilertsen, A. M., Kazymyrov, O., Kazymyrova, V., Storetvedt, M.: A Sage library for analysis of nonlinear
binary mapping. In Pre-proceedings of Central European Conference on Cryptology (CECC14), pp. 69-78.
2014.

