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Abstract. Many new ciphers are being introduced every year. Each well-educated researcher
with a degree in computer science can create a good cryptoprimitive, which will be unbreakable
awhile. The main blocks of modern ciphers are nonlinear components also known as substitutions.
The toolbox (library) for decreasing time of analyzing such components is given in this paper.
It can be used for investigation cryptographic properties of arbitrary nonlinear binary mappings
used in symmetric primitives.
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1 Introduction

Today’s information society has the conventional wisdom to enhance the security of infor-
mation systems. A significant role in this process has the implementation of cryptographic
primitives that provide the required level of cryptographic security. Enough time has passed
since cryptography has become public science. As a result, in many areas ciphers have started
to be used for protection of sensitive information.

Each year several new cryptoprimitives are issued [1,2]. Many designers justify the resis-
tance of the developed algorithms to known attacks, such as differential, linear or algebraic.
Meanwhile, an independent analysis requires tools to analyze both basic components and entire
encryption algorithms. On the other hand, if you are a developer of a perspective algorithm,
there is a need to analyze basic components as well. Choosing linear layers is a relatively sim-
ple task when only few indicators are considered [3]. The situation is completely opposite for
nonlinear layers which are usually presented as parallel application of substitutions (S-boxes).
Effective and simultaneous calculation of cryptographic properties of S-boxes is a nontrivial
task.

Analysis of current state shows today there is a number of tools that can be considered as
a partial solution of the problem [4,5,6,7,8]. However, the cryptographic community needs a
universal approach to calculate cryptographic indicators for arbitrary binary mappings. In this
paper we propose a tool for generating and analyzing arbitrary vectorial Boolean functions
F : Fn2 7→ Fm2 .

The rest of the paper is organized as follows. Section 2 describes the theoretical background
of substitution’s criteria. Section 3 introduces general overview of the “Sbox” library and
explains the main components and methods. Section 4 includes practical applications of the
proposed library. Finally, Section 5 presents our conclusions.

2 Preliminaries

In this section we present theoretical aspects of representation and construction of vectorial
Boolean functions. The relevant properties used in symmetric primitives are also considered in
this section. All definitions and indicators are well-known and one can see [9] for more details.



2.1 Definitions and notations

Let n and m be two positive integers. Define Fn2 as a vector space of all binary vectors of
length n, where F2 is the Galois field with elements {0, 1}. Then (n,m)-function is a vectorial
Boolean function F : Fn2 7→ Fm2 . Boolean functions f1, f2, . . . , fm, such that F (x1, . . . , xn) =
(f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)), and their linear combination are called coordinate and
component functions of F , respectively. If m = 1 then a vectorial Boolean function has a
single output bit and is equivalent to a Boolean function. To find algebraic properties of
(n,m)-functions, a vector space often has a structure of finite field F2n .

2.2 Cryptographic properties of Boolean functions

Suppose f : Fn2 7→ F2 is a Boolean function of n variables. Algebraic normal form of such
function is defined as

f(x1, x2, . . . , xn) =
∑

I∈P(1,...,n)

(∏
i∈I

xi

)
,

where P(z) denotes the power set of z. The algebraic degree of f (deg(f)) is the maximum
degree of the monomial with nonzero coefficient.

A Boolean function of n variables is called balanced if hw(f) = 2n−1, where hw(f) =
2n−1∑
x=0

f(x). The correlation between arbitrary Boolean function f(x), where x = (x1, x2, . . . , xn),

and the set of all linear functions is determined by Walsh transformation

W (w) =
2n−1∑
x=0

(−1)f(x)⊕lw(x),

where lw(x) = w ·x = w1x1⊕w2x2⊕ . . . wnxn. The nonlinearity is related to the Walsh values
as

NL(f) =
1

2

(
2n − max

∀w,w 6=0
|W (w)|

)
.

Autocorrelation of f (rf (α)) shows how the function differs from itself shifted on several
positions, i.e.

rf (α) =
2n−1∑
x=0

(−1)f(x)⊕f(x⊕α),

where α ∈ Fn2 . For cryptography the maximal value of the function rf (α) is of interest, which
can be found as

ACmax(f) = max
∀α,α 6=0

|rf (α)| .

Let σ be the sum-of-square indicator, then

σ =
2n−1∑
α=0

r2f (α).



Let hw(α) be a binary Hamming weight of α ∈ Fn2 [9]. Then we say that f(x) satisfies
propagation criterion of order k (PC(k)) if and only if for all nonzero vectors α ∈ Fn2 the
following system is true 

1 ≤ hw(α) ≤ k;
2n−1∑
x=0

f(x)⊕ f(x⊕ α) = 2n−1.

The strict avalanche criterion (SAC) corresponds to PC(1).
A Boolean function is correlation immune of order m (CI(m)) if the system of equations{

1 ≤ hw(w) ≤ m;

W (w) = 0.

is valid for all w ∈ Fn2 . If the function is balanced and satisfy CI(m) simultaneously, then such
function is called m-resilient.

To prevent some misunderstanding we present the indicator called algebraic immunity of
a Boolean function. The minimum algebraic degree of g(x) 6= 0 of the set {g | f(x) · g(x) = 0}
∪ {g | (f(x)⊕ 1) · g(x) = 0} is called algebraic immunity (AI) of f .

2.3 Cryptographic properties of substitutions

While Boolean functions are adopted mainly as filtering functions in stream ciphers, vectorial
Boolean function are used in block ciphers and hash functions as substitutions. For theoretical
analysis the univariate representation is one of the best ways to consider cryptographic prop-
erties of the binary mappings. However, field operations are not good optimized in modern
computers as operations with Boolean functions, especially for large n. Therefore, the repre-
sentation of (n,m)-functions as the set of component functions is a better way for practical
implementations.

Suppose substitution S is a table representation of a vectorial Boolean function F =
(f1, . . . , fm) from Fn2 to Fm2 . Define {hj = j · F | 0 < j < 2m} as the set of component
functions of F . Then

– nonlinearity of S is

NL(S) = min
0<j<2m

(NL(hj)) ;

– minimum degree of S is

deg(S) = min
0<j<2m

(deg(hj)) ;

– the maximum value of autocorrelation spectrum of S is

ACmax(S) = max
0<j<2m

(ACmax(hj)) ;

– S satisfies strict avalanche criterion if every hj satisfies SAC;
– S satisfies propagation criterion of order k if every hj satisfies PC(k);
– S is correlation immune of order k if every hj is CI(k);
– S is balanced (permutation) if every hj is balanced;



– S is k-resilient if every hj is k-resilient.

The similar properties for vectorial Boolean functions are given in [10].
While the maximum value of the approximation table (λ) can be calculated directly from

the nonlinearity of the S-box as λ = 2n−1 − NL(S), the maximum value of differential table
(MDT) cannot be easily evaluated from the component functions. Let δ be the maximum
number of times when the input difference maps to the output difference of the given S-box.
Then

δ = max
α∈Fn

2 ,α 6=0,β∈Fm
2

#{x | S(x)⊕ S(x⊕ α) = β}.

This indicator is also know as δ-uniformity [10].
The ways to represent a substitution as a system of equations over F2 are given in [11,12].

Define density as the fraction of nonzero elements in a system of equations. Then, a substitution
provides better protection against algebraic attacks if the system

– has higher degree;
– has fewer equations;
– is more dense.

Unambiguous theoretical relation between these parameters is an unsolved problem [12]. When
we are talking about the algebraic immunity of an S-box (AI(S)), then we mean the smallest
degree of the system.

2.4 Equivalence of vectorial Boolean functions

Two functions F,G : Fn2 7→ Fm2 are called extended affine (EA) equivalent if there exist such
affine permutations A1 = L1(x)+ c1, A2 = L2(x)+ c2 and arbitrary linear function L3(x) that

F (x) = A1 ◦G ◦A2(x) + L3(x).

If L3(x) = const, or L3(x) = 0, c1 = 0, and c2 = 0 then F and G are affine, or linear
equivalent, respectively. Moreover, for at least one missing element of L1(x), L2(x), L3(x), c1, c2
the functions are called restricted EA (REA) equivalent [13].

In [14] F and G are considered as GF (x, y) = {{x, y} | y = F (x)}. They are Carlet-
Charpin-Zinoviev (CCZ) equivalent, if for F2(x) = L3(x)+L4◦G(x) and permutation F1(x) =
L1(x) + L2 ◦G(x) the following equation is hold

F (x) = F2 ◦ F−11 (x),

where L1(x), L2(x), L3(x), L4(x) are arbitrary linear functions.
Both CCZ- and EA-equivalence preserve extended Walsh spectrum and δ-uniformity. How-

ever, the minimum degree remains the same only for the EA-equivalent functions. [10].

3 Design specification and main components

In this section we describe basic components of the “Sbox” library, and some methods for both
generation and cryptanalysis. The source code is available at github and distributed under
GPL v2 [15].



3.1 General overview of the library

There are many ready-made solutions [4,5,8]. However, all of them have certain limitations.
For example, the class SBox from the package mq in Sage is optimized only for small values [4].
By increasing n, functions do not return the expected results, i.e. the absence of the system of
equations of degree 2 for the AES substitution [16]. Most of the other programs or libraries are
designed to work with a limited number of properties and/or just with Boolean functions. As
a consequence, software to analyze arbitrary vectorial Boolean functions was developed taking
into account publicly available optimized algorithms.

The proposed implementation is written as an extension to Sage and presented as a package
with the main class “Sbox” [15]. Fig. 1 depicts the general overview of the library. It consists of
three main parts: Sbox, CSbox and GSbox. While most cryptanalytic functions are presented
in CSbox and connected to C/C++ code via Cython, GSbox includes methods for genera-
tion nonlinear binary mappings. Using Python as the main language is beneficial considering
that the language is somewhat easy to learn and use. It does in general a slower run time,
but this disadvantage may be offset by Cython and C/C++, making extensive mathematical
calculations faster.

Fig. 1: The general overview of “Sbox”

It should also be noted that some methods use integrated in Sage packages (i.e. finite_rings)
and cannot be transfered into other software. However, the C/C++ code is an independent
implementation and one can easily port it to own software.

Performance comparison with other tools. The performance comparison of software,
even written in one language, is a difficult task. It depends on many parameters including
operation system, compilations, memory and processors. We have not created best of the best
tool, but we took into account a number of articles with optimized algorithms for calculation of
cryptographic indicators [17,18]. Hence, we will present time comparisons as the most critical
indicator of the proposed implementation in Section 4.

3.2 Generation of vectorial Boolean functions

All functions that belong to this group start with “gen_” and defined in “GSbox.sage”. Most
of them are based on theoretical methods described in [10,19]. The correspondence between
methods implemented in the library and well-known names are presented in Table 1.

The library has also methods to find CCZ-(CCZ) and EA-equivalence (EA). They do not
allow to find vectorial Boolean functions with certain characteristics by themselves, however,
they play very important roles in cryptography. For completeness and additional experiments



Table 1: Correspondence of vectorial Boolean functions to methods defined in “Sbox.sage”
Vectorial Boolean functions Correspondent methods

Gold gold
Kasami kasami
Welch welch
Niho niho
Inverse inverse

Dobbertin dobbertin
Dicson dicson

APN for n = 6 APN6
Optimal permutation
polynomials for n = 4

OP4

the “Sbox” class includes methods for generating random substitutions and permutations that
are specified by “random_substitution” and “random_permutation”, respectively.

In order to unify different cases a single method “generate_sbox” was created, which has
parameters “method” to specify generation method and “T” to define equivalence. The optional
parameter “G” is used for setting a user-defined polynomial in the case of “method=polynomial”.

3.3 Cryptanalysis of vectorial Boolean functions

This group contains methods starting with “cr_”, which are described in “CSbox.sage”. Most
of the methods are also based on theoretical algorithms [10]. Nevertheless, the calculation of
some indicators has been optimized, i.e. calculation of the algebraic immunity or cycles. Table 2
shows the correspondence between the indicators described in Section 2, and the methods from
the “Sbox” library.

Table 2: Correspondence between cryptographic properties and methods in the library
Indicators Methods in “Sbox”
Balanceness balanced
Nonlinearity nonlinearity

Absolute indicator autocorrelation
Propagation criterion PC
Correlation immunity CI
Sum-of-square indicator SSI

Minimum degree minimum_degree
Resilience resilient

Strict avalanche criterion SAC
Bijection is_bijection

Maximum of differential table MDT
Maximum of linear
approximation table MLT

Cycles cycles
Algebraic immunity algebraic_immunity_sbox

To investigate the number of cryptographic properties in some applications, such as gener-
ation of pseudo-random sequences (i.e. using OFB mode), it is necessary to study the period
lengths of sequences obtained at the output of the block cipher. For these purposes, the “cycles”
method was implemented.

This group also contains a number of auxiliary functions, such as finding the univariate
polynomial or the system of equations describing the substitution; checking APN, or CCZ-



equivalence properties [20]. Some examples of the use of different methods are given in Section
4.

3.4 Other useful methods

The last group of methods is optional and is used as an extension of functionality. Table 3
contains the most important methods and their short description. As it can be seen from the
table, the methods’ names define their functional purpose.

Table 3: Optional methods of “Sbox’
Methods Comments
get_field return the filed F2max{n,m}

get_ring return the ring F2max{n,m} [x]

get_mg return a multiplicative
generator of the field

get_sbox return the substitution

get_polynomial return the univariate polynomial
of the substitution

set_sbox set a substitution for analysis
Tr_pol return a trace of input polynomial

g2p
transform a given polynomial with

multiplicative element to the
internal representation

p2g inverse method to g2p

4 Application of the “Sbox” library

To give an example of the library usage, we present the main steps of generation of the APN
permutation for n = 6. First let us give a mathematical definition of such function [20].

Theorem 1. Let α be a multiplicative generator of F26 with irreducible polynomial f(x) =
x6 + x4 + x3 + x+ 1. Then the APN function

F (x) = αx3 + α5x10 + α4x24

is CCZ-equivalent to an APN permutation over F26.

For example, for the linear function

L(x, y) = (tr6/3(α
4x) + αtr6/3(y), tr6/3(αx) + αtr6/3(α

4y)),

where tr6/3 = x+ x2
3 , y = F (x), the function GH = L(GF ) is the APN permutation.

Using the above description one can easily start repeating the following example in Sage.
First we need to identify the main variables, including the ring F26 [x] (P), a multiplicative
generator (g) of F26 , and the trace (tr).
sage: %runfile ./Sbox.sage
sage: S = Sbox(n=6,m=6)
sage: P = S.get_ring ()
sage: g = S.get_mg ()
a
sage: tr = S.Tr_pol(x=P("x"),n=6,m=3)
sage: tr
x^8 + x



Next it is necessary to specify linear functions and convert them from polynomial repre-
sentations to matrix forms [13].
sage: M1 = S.l2m(tr.subs(P("(%s)*x"%(g^4))))
sage: M2 = S.l2m(g*tr)
sage: M3 = S.l2m(tr.subs(P("(%s)*x"%(g))))
sage: M4 = S.l2m(g*tr.subs(P("(%s)*x"%(g^4))))

In the end, we apply CCZ-equivalence to the function F and check on APN properties.
sage: F = "g*x^3+g^5*x^10+g^4*x^24"
sage: S.generate_sbox(method="polynomial",G=F,T="CCZ",M1=M1 ,M2=M2,M3=

↪→ M3 ,M4=M4)
sage: S.is_bijection ()
True
sage: S.is_APN ()
True
sage: S.MDT()
2

The same result can be achieved by the following commands.
sage: S = Sbox(n=6,m=6)
sage: S.generate_sbox(method=’APN6’)
sage: S.is_bijection ()
True
sage: S.is_APN ()
True

The above example shows, that hundred of strings of other libraries can be replaced by
a few lines of the proposed library to achieve the same functionality. On the other hand, the
performance needs to be at a high level. Fig. 2 shows the time complexity of several frequently
used methods for n = m.
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Fig. 2: The relationship between the dimension of random substitutions and time of
calculation

All results are presented as the average values of 1000 runs on Macbook Pro Retina Mid
2012 [21]. One can easily notice that the figure doesn’t show the results for every n. This is
due to the fact that every function has limitations either in memory or in time. For example,
the time needed for counting the value of algebraic immunity is negligible, while the memory
is growing very fast. Consequently, every function has the maximum values of n or m after
which the indicators become difficult to calculate on an ordinary computer.



Other examples for different values of n and m is given are Table 4. One can see that the
library can work correctly with any dimension, but in the same time has some limitations.

Table 4: Performance of different methods from the “Sbox” library given in ms

Properties (n,m)-functions
(6,10) (8,1) (8,4) (10,2) (10,8) (3,12) (12,3) (12,6) (12,9)

MDT 0.083 0.17 0.17 2.34 2.34 0.037 37.15 37.15 38.02
MLT 1.23 0.068 0.126 0.114 4.9 0.501 0.708 5.25 41.69

Algebraic immunity 1 8.91 2.24 6.17 22.4 - 39.8 75.9 -
Minimum degree 89.64 0.35 4.77 3.92 329.3 48.67 35.78 320.89 2631
Balancedness 0.102 0.331 0.338 1.26 1.32 0.025 5.13 5.13 5.01
ACmax(S) 5.89 109.6 110.6 2951.2 2818.4 0.1 112202 117490 114815

Interpolation polynomial 112.2 457.1 457.1 7586 14454 11.74 281838 288403 275422
Cycles 0.263 1.78 2.69 8.13 25.7 0.074 41.69 72.45 158.49
PC 6.03 89.1 89.1 1446 1446 0.098 23442 23442 24547

From a practical point of view the “Sbox” library can be used to analyze nonlinear com-
ponents of the existing cryptographic primitives. The substitution comparison of AES, GOST
R 34.11-2012, STB 34.101.31-2011, "Kalyna" (S0) [22], and a substitution proposed in [23] is
given in Table 5.

Table 5: Comparison of 8-bit S-boxes

Properties AES GOST R
34.11-2012

STB
34.101.31-2011

Kalyna’s
S0

Proposed
[23]

MDT 4 8 8 8 8
MLT 16 28 26 32 24

Absolute indicator 32 96 80 88 80
SSI 133120 258688 232960 244480 194944

Minimum degree 7 7 6 7 7
Algebraic immunity 2 3 3 3 3

5 Conclusions

It has been indicated quite clear that practical realization of theoretically proved results is
time and resource consuming in most cases. Conducted analysis has shown that no sufficiently
effective tools of finding characteristics of arbitrary substitutions exist to date.

The “Sbox” library implementation allows to solve many problems related to cryptanaly-
sis. It includes lots of known generation methods and functions for computing permutations’
properties. Moreover, the library is designed in the way that gives an opportunity to extent
its functionality quite easily.
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