Verification of EA-equivalence for Vectorial Boolean Functions

Lilya Budaghyan, Oleksandr Kazymyrov

Department of Informatics, University of Bergen, Bergen, Norway
Oleksandr.Kazymyrov@uib.no

$$
\text { July 17, } 2012
$$

WAIFI 2012

Outline

(1) Basic Definitions
(2) Equivalence of Vectorial Functions
(3) Verification of Equivalence for Vectorial Boolean Functions

Basic Definitions

Let $\alpha \in \mathbb{F}_{2^{n}}$ be the root of a primitive polynomial $f(x)$ of degree n over \mathbb{F}_{2}, then

$$
\mathbb{F}_{2^{n}}=\left\{0, \alpha, \alpha^{2}, \ldots, \alpha^{2^{n}-1}\right\}
$$

Any $b \in \mathbb{F}_{2^{n}}$ has the following representations

- polynomial (binary)
- integer
- logarithmic

Example of Representations

Let $f(x)=x^{3}+x+1, n=3$ and $\alpha=x$ then

\log	polynomial	binary	integer
0	0	$(0,0,0)$	0
α	x	$(0,1,0)$	2
α^{2}	x^{2}	$(0,0,1)$	4
α^{3}	$x+1$	$(1,1,0)$	3
α^{4}	$x^{2}+x$	$(0,1,1)$	6
α^{5}	$x^{2}+x+1$	$(1,1,1)$	7
α^{6}	$x^{2}+1$	$(1,0,1)$	5
α^{7}	1	$(1,0,0)$	1

Basic Definitions

Let n and m be two positive integers. Any function
$F: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{m}$ is called an (n, m)-function.
(n, m)-functions are used in cryptography as:

- nonlinear combining or filtering functions in the pseudo-random generators (stream ciphers)
- substitution boxes (S-boxes) providing confusion in block ciphers

ANF and Algebraic Degree

The algebraic normal form (ANF) of any (n, m)-function F always exists and is unique:

$$
\sum_{I \subseteq\{1, \ldots, n\}} a_{I}\left(\prod_{i \in I} x_{i}\right)=\sum_{I \subseteq\{1, \ldots, n\}} a_{I} x^{I}, a_{I} \in \mathbb{F}_{2}^{m}
$$

The algebraic degree of F

$$
\operatorname{deg}(F)=\max \left\{|I| \mid a_{I} \neq 0\right\}
$$

Any (n, n)-function F admits a unique univariate polynomial representation over $F_{2^{n}}$, of degree at most $2^{n}-1$:

$$
F(x)=\sum_{j=0}^{2^{n}-1} \delta_{j} x^{j}, \delta_{j} \in \mathbb{F}_{2^{n}}
$$

Almost Bent Function

The Walsh transform of an (n, m)-function F at $(u, v) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}$

$$
\lambda(u, v)=\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{v \cdot F(x)+u \cdot x}
$$

where "." are inner products.
Extended Walsh Spectrum

$$
\Lambda_{F}=\left\{|\lambda(u, v)| \mid(u, v) \in \mathbb{F}_{2}^{n} \times \mathbb{F}_{2}^{m}, v \neq 0\right\}
$$

Function F is called almost bent (AB) if $\Lambda_{F} \in\left\{0,2^{\frac{n+1}{2}}\right\}$.

Almost Perfect Nonlinear

- F is differentially δ-uniform if equation

$$
b=F(x)+F(x+a), \forall a \in \mathbb{F}_{2}^{n}, \forall b \in \mathbb{F}_{2}^{m}, a \neq 0
$$

has at most δ solutions.

- F with $\delta=2^{n-m}$ is called perfect nonlinear
- An (n, n)-function F is almost perfect nonlinear (APN) if $\delta=2$
- Since characteristic of field $\mathbb{F}_{2^{n}}$ is $2, \delta \geq 2$ and must be even.

Basic Definitions

A function $F: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{m}$ is linear if

$$
L(x)=\sum_{i=0}^{n-1} c_{i} x^{2^{i}}, c_{i} \in \mathbb{F}_{2^{m}}
$$

The sum of a linear function and a constant is called an affine function

$$
A(x)=L(x)+c, c \in \mathbb{F}_{2^{m}} .
$$

Basic Definitions

Matrix representation of an affine function $A(x)$

$$
A(x)=M \cdot x \oplus C,
$$

where M is $m \times n$ matrix and $C \in \mathbb{F}_{2}^{m}$.
All operations are performed in the field \mathbb{F}_{2}. In other words

$$
\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\cdots \\
a_{m-1}
\end{array}\right)_{x}=\left(\begin{array}{ccc}
k_{0,0} & \cdots & k_{0, n-1} \\
k_{1,0} & \cdots & k_{1, n-1} \\
\vdots & \ddots & \vdots \\
k_{m-1,0} & \cdots & k_{m-1, n-1}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{0} \\
x_{1} \\
\cdots \\
x_{n-1}
\end{array}\right) \oplus\left(\begin{array}{c}
c_{0} \\
c_{1} \\
\cdots \\
c_{m-1}
\end{array}\right)
$$

Outline

(1) Basic Definitions

(2) Equivalence of Vectorial Functions
(3) Verification of Equivalence for Vectorial Boolean Functions

EA-equivalence

- Two functions F and G are called EA-equivalent if

$$
\begin{aligned}
F(x) & =A_{1} \circ G \circ A_{2}(x)+L_{3}(x)= \\
& =L_{1}\left(G\left(L_{2}(x)+c_{2}\right)\right)+L_{3}(x)+c_{1}
\end{aligned}
$$

for some affine permutations $A_{1}(x)=L_{1}(x)+c_{1}$, $A_{2}(x)=L_{2}(x)+c_{2}$ and linear function $L_{3}(x)$.

- Functions F and G are restricted EA-equivalent if some functions of $\left\{L_{1}, L_{2}, L_{3}, c_{1}, c_{2}\right\}$ are in $\{0, x\}$. Two special cases
- linear equivalent: $\left\{L_{3}, c_{1}, c_{2}\right\}=\{0,0,0\}$
- affine equivalent: $L_{3}=0$

EA-equivalence

For $F, G: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{m}$ another form of representation of EA-equivalence is the matrix form

$$
F(x)=M_{1} \cdot G\left(M_{2} \cdot x \oplus V_{2}\right) \oplus M_{3} \cdot x \oplus V_{1}
$$

where elements of $\left\{M_{1}, M_{2}, M_{3}, V_{1}, V_{2}\right\}$ have dimensions $\{m \times m, n \times n, m \times n, m, n\}$.
Matrices M_{i} and vectors V_{j} have a form

$$
M=\left(\begin{array}{ccc}
k_{0,0} & \cdots & k_{0, n-1} \\
k_{1,0} & \cdots & k_{1, n-1} \\
\vdots & \ddots & \vdots \\
k_{m-1,0} & \cdots & k_{m-1, n-1}
\end{array}\right), \quad V=\left(\begin{array}{c}
v_{0} \\
v_{1} \\
\cdots \\
v_{m-1}
\end{array}\right) .
$$

CCZ-equivalence

Two functions $F(x)$ and $G(x)$ are CCZ-equivalent iff for some affine permutation $\mathcal{L}(x, y)=\left(L_{1}(x)+L_{2}(y), L_{3}(x)+L_{4}(y)\right)$

$$
F(x)=F_{2} \circ F_{1}^{-1}(x)
$$

where F_{1} is a permutation and

$$
F_{1}(x)=L_{1}(x)+L_{2} \circ G(x) ; \quad F_{2}(x)=L_{3}(x)+L_{4} \circ G(x)
$$

If F is CCZ-equivalent to G and $L_{2}=$ const (resp. $L_{1}=$ const) then G (resp. G^{-1}) and F are EA-equivalent. Invariant characteristics for both equivalences:

- extended Walsh spectrum (nonlinearity, $A B$)
- δ-uniformity (APN)

Only EA-equivalence preserves algebraic degree.

Outline

(1) Basic Definitions

(2) Equivalence of Vectorial Functions
(3) Verification of Equivalence for Vectorial Boolean Functions

Open Problems

1. Verification of EA-equivalence for arbitrary functions.
2. For given functions F and G, find affine permutations A_{1}, A_{2} and a linear function L_{3} such that

$$
F(x)=A_{1} \circ G \circ A_{2}(x)+L_{3}(x)
$$

Complexity of exhaustive search for $F, G: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{n}$ equals
$O\left(2^{3 n^{2}+2 n}\right)$. For $n=6$ the complexity is already 2^{120}.

Open Problems

Alex Biryukov et al. have shown that for permutation G :

- $F(x)=L_{1} \circ G \circ L_{2}\left(O\left(n^{2} \cdot 2^{n}\right)\right)$
- $F(x)=A_{1} \circ G \circ A_{2}\left(O\left(n \cdot 2^{2 n}\right)\right)$

The following complexities are not taken into account:

- obtaining the value $F(x)$ for any x;
- computation of $F^{-1}(x)$ and corresponding substitution;
- memory needed for data storage.

Convert Linear Function to Matrix

For linear function $L: \mathbb{F}_{2}^{n} \mapsto \mathbb{F}_{2}^{m}$ and $m \times n$ matrix M

$$
L(x)=M \cdot x
$$

suppose

$$
\begin{aligned}
& \operatorname{rows}_{M}(i)=\left(m_{i j}\right), \forall j \in\{0,1, \ldots, n-1\} \\
& \operatorname{cols}_{M}(i)=\left(m_{j i}\right), \forall j \in\{0,1, \ldots, m-1\}
\end{aligned}
$$

For $x=2^{i}, i \in\{0,1, \ldots, n-1\}$

$$
2^{0}=\left(\begin{array}{c}
1 \\
0 \\
\ldots \\
0
\end{array}\right) \quad 2^{1}=\left(\begin{array}{c}
0 \\
1 \\
\ldots \\
0
\end{array}\right) \quad 2^{n-1}=\left(\begin{array}{c}
0 \\
0 \\
\ldots \\
1
\end{array}\right)
$$

Convert Linear Function to Matrix

Relation Between Function and Matrix

$$
L\left(2^{i}\right)=\operatorname{cols}_{M}(i), \forall i \in\{0,1, \ldots, n-1\}
$$

Suppose $L: \mathbb{F}_{2^{4}} \mapsto \mathbb{F}_{2^{4}}, L(x)=\alpha^{4} x+\alpha^{3} x^{2}+\alpha^{11} x^{4}+\alpha^{5} x^{8}$.

$$
\begin{aligned}
L(1) & =\alpha^{4}=z+1=(1,1,0,0)=3 \\
L(2) & =\alpha^{6}=z^{3}+z^{2}=(0,0,1,1)=12 \\
L(4) & =\alpha^{3}=z^{3}=(0,0,0,1)=8 \\
L(8) & =\alpha^{13}=z^{3}+z^{2}+1=(1,0,1,1)=13 \\
M & =\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1
\end{array}\right) \quad O(n)
\end{aligned}
$$

Equivalence of $F(x)=M_{1} \cdot G(x) \oplus V_{1}$

Restricted EA-equivalence

$$
F(x)=M_{1} \cdot G(x) \oplus V_{1}
$$

Let $G(x)=G^{\prime}(x) \oplus G(0)$ and $F(x)=F^{\prime}(x) \oplus F(0)$ then

$$
\begin{gathered}
F^{\prime}(x) \oplus F(0)=M_{1} \cdot G^{\prime}(x) \oplus M_{1} \cdot G(0) \oplus V_{1} \\
\left\{\begin{array}{l}
F(0)=M_{1} \cdot G(0) \oplus V_{1} \\
F^{\prime}(x)=M_{1} \cdot G^{\prime}(x)
\end{array}\right.
\end{gathered}
$$

Two different cases

- $\left\{2^{i} \mid 0 \leq i \leq m-1\right\} \subset \operatorname{img}\left(G^{\prime}\right)$
- $G^{\prime}(x)$ is arbitrary

Equivalence of $F(x)=M_{1} \cdot G(x) \oplus V_{1}$

- $\left\{2^{i} \mid 0 \leq i \leq m-1\right\} \subset \operatorname{img}\left(G^{\prime}\right)$

$$
\begin{gathered}
F^{\prime}(x)=M_{1} \cdot G^{\prime}(x) \\
G^{\prime}\left(x_{i}\right)=2^{i}, 0 \leq i \leq m-1 \\
N=\left\{x_{i} \mid G^{\prime}\left(x_{i}\right)=2^{i}, 0 \leq i \leq m-1\right\} \\
F^{\prime}\left(a_{i}\right)=\operatorname{cols}_{M_{1}}(i), a_{i} \in N, i \in\{0,1, \ldots, m-1\}
\end{gathered}
$$

Complexity:
Cheking $M_{1}, \forall x \in \mathbb{F}_{2}^{n}$

$$
O\left(2^{n}+m+2^{n}\right) \approx O\left(2^{n+1}\right)
$$

Finding N
Finding M_{1}

Equivalence of $F(x)=M_{1} \cdot G(x) \oplus V_{1}$

- $G^{\prime}(x)$ is arbitrary.

Definition

Let $F^{\prime}(x)_{i}$ be $\mathrm{i}^{\text {th }}$-bit of $F^{\prime}(x), u_{G^{\prime}}=\left|i m g\left(G^{\prime}\right)\right|$ and $N_{G^{\prime}}$ be any subset of \mathbb{F}_{2}^{n} such that $\left|\left\{G^{\prime}(a) \mid a \in N_{G^{\prime}}\right\}\right|=u_{G^{\prime}}$.

Example

- S-box ${ }_{G}=[0,8,1,2,8,1,3,5,2,2,0,1,5,11,13,2]$

Equivalence of $F(x)=M_{1} \cdot G(x) \oplus V_{1}$

- $G^{\prime}(x)$ is arbitrary.

Definition

Let $F^{\prime}(x)_{i}$ be $\mathrm{i}^{\text {th }}$-bit of $F^{\prime}(x), u_{G^{\prime}}=\left|i m g\left(G^{\prime}\right)\right|$ and $N_{G^{\prime}}$ be any subset of \mathbb{F}_{2}^{n} such that $\left|\left\{G^{\prime}(a) \mid a \in N_{G^{\prime}}\right\}\right|=u_{G^{\prime}}$.

Example

- S-box ${ }_{G}=[0,8,1,2,8,1,3,5,2,2,0,1,5,11,13,2]$
- $\operatorname{img}(G)=[0,8,1,2,3,5,11,13]$

Equivalence of $F(x)=M_{1} \cdot G(x) \oplus V_{1}$

- $G^{\prime}(x)$ is arbitrary.

Definition

Let $F^{\prime}(x)_{i}$ be $\mathrm{i}^{\text {th }}$-bit of $F^{\prime}(x), u_{G^{\prime}}=\left|i m g\left(G^{\prime}\right)\right|$ and $N_{G^{\prime}}$ be any subset of \mathbb{F}_{2}^{n} such that $\left|\left\{G^{\prime}(a) \mid a \in N_{G^{\prime}}\right\}\right|=u_{G^{\prime}}$.

Example

- S-box ${ }_{G}=[0,8,1,2,8,1,3,5,2,2,0,1,5,11,13,2]$
- $\operatorname{img}(G)=[0,8,1,2,3,5,11,13]$
- $N_{G}=[0,1,2,3,6,7,13,14]$

Equivalence of $F(x)=M_{1} \cdot G(x) \oplus V_{1}$

- $G^{\prime}(x)$ is arbitrary.

$$
\begin{aligned}
F^{\prime}\left(x_{j}\right)_{i} & =\operatorname{rows}_{M_{1}}(i) \cdot G^{\prime}\left(x_{j}\right), \quad \forall x_{j} \in N_{G^{\prime}}, 0 \leq j \leq u_{G^{\prime}}-1 \Leftrightarrow \\
& \Leftrightarrow\left\{\begin{array}{l}
F^{\prime}\left(x_{0}\right)_{i}=\operatorname{rows}_{M_{1}}(i) \cdot G^{\prime}\left(x_{0}\right) \\
F^{\prime}\left(x_{1}\right)_{i}=\operatorname{rows}_{M_{1}}(i) \cdot G^{\prime}\left(x_{1}\right) \\
\cdots \\
F^{\prime}\left(x_{u_{G^{\prime}}-1}\right)_{i}=\operatorname{rows}_{M_{1}}(i) \cdot G^{\prime}\left(x_{u_{G^{\prime}}-1}\right)
\end{array}\right.
\end{aligned}
$$

For $u_{G^{\prime}} \approx 2^{n}$ the complexity is equal to

$$
O\left(m \cdot 2^{2 n}\right)
$$

Equivalence of $F(x)=G(x) \oplus M_{3} \cdot x \oplus V_{1}$

Restricted EA-equivalence

$$
F(x)=G(x) \oplus M_{3} \cdot x \oplus V_{1}
$$

Let $H(x)=F(x) \oplus G(x)$ then

$$
\begin{gathered}
H(x)=F(x) \oplus G(x)=M_{3} \cdot x \oplus V_{1} \\
H(x)=H^{\prime}(x) \oplus H(0) \\
\left\{\begin{array}{l}
V_{1}=H(0) \\
H^{\prime}(x)=M_{3} \cdot x
\end{array}\right.
\end{gathered}
$$

For $x=2^{i}, \forall i=\{0,1, \ldots, n-1\}$ find M_{3} with complexity

$$
O(n)
$$

Equivalence of $F(x)=G\left(M_{2} \cdot x \oplus V_{2}\right)$

Restricted EA-equivalence

$$
F(x)=G\left(M_{2} \cdot x \oplus V_{2}\right)
$$

- G is a permutation. Let $H(x)=G^{-1}(F(x))$

$$
\begin{gathered}
H(x)=M_{2} \cdot x \oplus V_{2} \\
H(x)=H^{\prime}(x)+H(0) \\
\left\{\begin{array}{l}
V_{2}=H(0) \\
H^{\prime}(x)=M_{2} \cdot x
\end{array}\right.
\end{gathered}
$$

For $x=2^{i}, \forall i=\{0,1, \ldots, n-1\}$ find M_{2} with complexity

$$
O(n)
$$

Equivalence of $F(x)=M_{1} \cdot G(x) \oplus M_{3} \cdot x \oplus V_{1}$

Restricted EA-equivalence

$$
F(x)=M_{1} \cdot G(x) \oplus M_{3} \cdot x \oplus V_{1}
$$

Every vectorial Boolean function H admits the form

$$
\begin{aligned}
& H(x)=H^{\prime}(x) \oplus L_{H}(x) \oplus H(0) \\
& \left\{\begin{array}{l}
F^{\prime}(x)=M_{1} \cdot G^{\prime}(x) \\
L_{F}(x)=M_{1} \cdot L_{G}(x) \oplus M_{3} \cdot x \\
F(0)=M_{1} \cdot G(0) \oplus V_{1}
\end{array}\right.
\end{aligned}
$$

$$
O\left(2^{n+1}\right)
$$

$$
O\left(m \cdot 2^{2 n}\right)
$$

$\left\{2^{i} \mid 0 \leq i \leq m-1\right\} \subset \operatorname{img}\left(G^{\prime}\right) \quad G^{\prime}(x)$ is arbitrary

Summary Table of Obtained Results

Restricted EA-equivalence	Complexity	G
$F(x)=M_{1} \cdot G\left(x \oplus V_{2}\right) \oplus V_{1}$	$O\left(2^{2 n+1}\right)$	\dagger
$F(x)=M_{1} \cdot G\left(x \oplus V_{2}\right) \oplus V_{1}$	$O\left(m \cdot 2^{3 n}\right)$	A
$F(x)=G\left(M_{2} \cdot x \oplus V_{2}\right) \oplus V_{1}$	$O\left(n \cdot 2^{m}\right)$	P
$F(x)=G\left(x \oplus V_{2}\right) \oplus M_{3} \cdot x \oplus V_{1}$	$O\left(n \cdot 2^{n}\right)$	A
$F(x)=M_{1} \cdot G\left(x \oplus V_{2}\right) \oplus M_{3} \cdot x \oplus V_{1}$	$O\left(2^{2 n+1}\right)$	\ddagger
$F(x)=M_{1} \cdot G\left(x \oplus V_{2}\right) \oplus M_{3} \cdot x \oplus V_{1}$	$O\left(m \cdot 2^{3 n}\right)$	A
$\dagger-G$ is under condition $\left\{2^{i} \mid 0 \leq i \leq m-1\right\} \subset \operatorname{img}\left(G^{\prime}\right)$		
where $G^{\prime}(x)=G(x) \oplus G(0)$.		

$\ddagger-G$ is under condition $\left\{2^{i} \mid 0 \leq i \leq m-1\right\} \subset \operatorname{img}\left(G^{\prime}\right)$ where $G^{\prime}(x)=G(x) \oplus L_{G}(x) \oplus G(0)$.

Comparison of the Results

Restricted EA-equivalence	Complexity	$G(x)$
$F(x)=M_{1} \cdot G\left(M_{2} \cdot x\right)$	$O\left(n^{2} \cdot 2^{n}\right)$	P
$F(x)=M_{1} \cdot G\left(M_{2} \cdot x \oplus V_{2}\right) \oplus V_{1}$	$O\left(n \cdot 2^{2 n}\right)$	P
$F(x)=M_{1} \cdot G\left(x \oplus V_{2}\right) \oplus V_{1}$	$O\left(2^{2 n+1}\right)$	\dagger
$F(x)=M_{1} \cdot G\left(x \oplus V_{2}\right) \oplus V_{1}$	$O\left(n \cdot 2^{3 n}\right)$	A
$F(x)=G\left(M_{2} \cdot x \oplus V_{2}\right) \oplus V_{1}$	$O\left(n \cdot 2^{n}\right)$	P
$F(x)=G\left(x \oplus V_{2}\right) \oplus M_{3} \cdot x \oplus V_{1}$	$O\left(n \cdot 2^{n}\right)$	A
$F(x)=M_{1} \cdot G\left(x \oplus V_{2}\right) \oplus M_{3} \cdot x \oplus V_{1}$	$O\left(2^{2 n+1}\right)$	\ddagger
$F(x)=M_{1} \cdot G\left(x \oplus V_{2}\right) \oplus M_{3} \cdot x \oplus V_{1}$	$O\left(n \cdot 2^{3 n}\right)$	A

$\dagger-G$ is under condition $\left\{2^{i} \mid 0 \leq i \leq m-1\right\} \subset \operatorname{img}\left(G^{\prime}\right)$ where $G^{\prime}(x)=G(x)+G(0)$.
$\ddagger-G$ is under condition $\left\{2^{i} \mid 0 \leq i \leq m-1\right\} \subset \operatorname{img}\left(G^{\prime}\right)$ where $G^{\prime}(x)=G(x) \oplus L_{G}(x) \oplus G(0)$.

References

图 A．Biryukov，C．De Canniere，A．Braeken，B．Preneel，A Toolbox for Cryptanalysis：Linear and Affine Equivalence Algorithms，Eurocrypt，LNCS 2656，Springer－Verlag，pp． 3350， 2003.

击 C．Carlet，P．Charpin，and V．Zinoviev，＂Codes，Bent Functions and Permutations Suitable For DES－like Cryptosystems＂，presented at Des．Codes Cryptography， 1998，pp．125－156．

䍰 C．Carlet，Vectorial Boolean functions for cryptography．In： Y．Crama，P．Hammer（eds．），Boolean Methods and Models，Cambridge Univ．Press，Cambridge．

