Binary Decisions Diagrams for Algebraic Attacks

Oleksandr Kazymyrov, Håvard Raddum

May 7, 2014
Winter School in Information Security Finse, Norway

Current State

Figure: Development of Algebraic Attack

Binary Decisions Diagram (BDD)

$$
f\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{3}+x_{1}+x_{2}+x_{3}+1
$$

Figure: Binary decision diagram for f function

BDD in Cryptology

Figure : Example of a BDD with four levels

S-box Representation Using BDD

$$
\text { S-box }=\{5, C, 8, F, 9,7,2, B, 6, A, 0, D, E, 4,3,1\}
$$

Previous Results For Stream Ciphers

Binary decision diagram (BDD)-based cryptanalysis of

- A5/1 (GSM keystream generator)
- E0 (Bluetooth keystream generator)
- Trivium (eSTREAM Portfolio, Profile 2)
- Grain (eSTREAM Portfolio, Profile 2)

Previous Results For Block Ciphers

N.T. Courtois, G.V. Bard [1]

The 6 -round DES (with 20 fixed key bits) was attacked by algebraic attack in several minutes with the help of conversion to SAT and applying MiniSat 2.0.

E. Kleiman, [2]

The MiniAES (16-bit version) was attacked by XL and XSL methods.
"This results in a large sparse system of linear equations over the field $G F(2)$ with an unknown number of extraneous solutions that need to be weeded out."

New Results of AA via BDD Representation

DES

- Our best result is finding the key of 6-round DES using 8 chosen plaintext/ciphertext pairs without fixing or guessing any variables.
- The average complexity is $2^{20.571}$ nodes, which is equivalent to ~ 1 minute on MacBook Air 2013 with 8GB RAM.

MiniAES

10-round MiniAES was totally broken via the BDD method using 1 known plaintext/ciphertext pair on regular PC. The average memory complexity is $2^{24.961}$ nodes.

New Results of AA via BDD Representation

Table : Complexities for solving reduced-round DES-systems. Each cell shows the minimum, average and maximum complexity observed over 100 instances.

rounds \# texts	1	2	3	4	5	6	7	8
4	$2^{22.651}$	$2^{10.800}$	$2^{9.281}$	$2^{9.585}$	$2^{9.748}$	$2^{9.976}$	$2^{10.103}$	$2^{10.283}$
	$\mathbf{2}^{\mathbf{2 2 . 7 1 5}}$	$\mathbf{2}^{\mathbf{1 4 . 5 0 6}}$	$\mathbf{2}^{\mathbf{1 0 . 6 0 6}}$	$\mathbf{2}^{\mathbf{1 0 . 2 5 7}}$	$\mathbf{2}^{9.805}$	$\mathbf{2}^{\mathbf{1 0 . 0 7 0}}$	$\mathbf{2}^{\mathbf{1 0 . 2 0 3}}$	$\mathbf{2}^{\mathbf{1 0 . 3 8 1}}$
	$2^{22.770}$	$2^{17.473}$	$2^{13.006}$	$2^{12.029}$	$2^{9.892}$	$2^{10.412}$	$2^{10.978}$	$2^{10.446}$
5	5	$2^{19.472}$	$2^{13.831}$	$2^{11.440}$	$2^{12.126}$	$2^{12.289}$	$2^{12.583}$	$2^{12.749}$
		$\mathbf{2}^{\mathbf{2 2 . 1 1 0}}$	$\mathbf{2}^{\mathbf{1 6 . 4 5 5}}$	$\mathbf{2}^{\mathbf{1 3 . 5 2 6}}$	$\mathbf{2}^{13.995}$	$\mathbf{2}^{\mathbf{1 4 . 2 1 2}}$	$\mathbf{2}^{\mathbf{1 4 . 4 1 0}}$	$\mathbf{2}^{\mathbf{1 4 . 7 0 4}}$
		$2^{23.805}$	$2^{19.329}$	$2^{15.618}$	$2^{16.633}$	$2^{16.758}$	$2^{16.882}$	$2^{17.414}$
6						$2^{24.506}$	$2^{22.206}$	$2^{19.932}$
						$\mathbf{2}^{\mathbf{2 4 . 9 2 9}}$	$\mathbf{2}^{\mathbf{2 2 . 7 3 9}}$	$\mathbf{2}^{\mathbf{2 0 . 5 7 1}}$
						$2^{25.352}$	$2^{24.324}$	$2^{21.915}$

Open Problems and Further Development

- Development of general methodology and justification of theoretical bounds:
- Does there exist a generic algorithm giving an order of BDDs that yield low complexity when applying linear absorption?
- Is it possible to analytically estimate the complexity of solving a BDD system of equations, or do we have to actually run the solver to find out?
- Which ciphers are most vulnerable against this type of algebraic attacks?
- More block ciphers, stream ciphers and hash functions can be attacked

References

(1) Courtois, N.T., Bard, G.V., Algebraic cryptanalysis of the Data Encryption Standard, Cryptography and Coding, LNCS 4887, pp. 152-169, Springer (2007).
(2) Kleiman, E., High Performance Computing techniques for attacking reduced version of AES using XL and XSL methods, Graduate Theses and Dissertations (2010) http://lib.dr.iastate.edu/etd/11473.

