
Homomorphic encryption

Oleksandr Kazymyrov

University of Bergen
Norway

20th of October, 2014

Oleksandr Kazymyrov Homomorphic encryption 1 / 31

Outline

1 Introduction

2 Partially homomorphic encryption

3 “Somewhat” homomorphic encryption

4 Fully homomorphic encryption

5 Public-key homomorphic encryption

6 Conclusions

Oleksandr Kazymyrov Homomorphic encryption 2 / 31

Cloud computations

Oleksandr Kazymyrov Homomorphic encryption 3 / 31

Encrypted cloud computations

Oleksandr Kazymyrov Homomorphic encryption 4 / 31

Computing on encrypted data

It would be nice to be able to ...

• encrypt data in the cloud

↪→ while still allowing the cloud to search, sort, edit ...

• keep the data in the cloud in encrypted form

↪→ without need to encrypt/decrypt every time

• encrypt queries to the cloud

↪→ while still allowing the cloud to process them
↪→ the cloud returns encrypted answers
Homomorphic encryption

Oleksandr Kazymyrov Homomorphic encryption 5 / 31

Cloud computations with homomorphic encryption

Oleksandr Kazymyrov Homomorphic encryption 6 / 31

What is a homomorphic encryption (HE)?

• An encryption scheme: (KeyGen, Enc , Dec)
? (pk , sk) = KeyGen(rnd), ci = Encpk(mi), mi = Decsk(ci)

• A homomorphic encryption scheme: (KeyGen, Enc , Dec ,
EvalEval)
? {c ′i } = Evalpk(f , {ci})
? {c ′i } = Evalpk(f , {ci}), Decsk(Evalpk(f , {Encpk(xi)})) = f ({xi})

P - partially

S - “somewhat”

F - full

Oleksandr Kazymyrov Homomorphic encryption 7 / 31

Outline

1 Introduction

2 Partially homomorphic encryption

3 “Somewhat” homomorphic encryption

4 Fully homomorphic encryption

5 Public-key homomorphic encryption

6 Conclusions

Oleksandr Kazymyrov Homomorphic encryption 8 / 31

Partially homomorphic encryption schemes

RSA
KeyGen: N = p · q, where p and q large prime numbers

gcd(e, φ(N)) = 1⇒ d · e ≡ 1 (mod φ(N))

Enc : c ≡ me (mod N)

Dec : m ≡ cd (mod N)

Enc(m1) · Enc(m2) = Enc(m1 ·m2):

c1 ≡ me
1 (mod N) c2 ≡ me

2 (mod N)

c1 · c2 ≡ me
1 ·me

2 ≡ (m1 ·m2)e (mod N)

Oleksandr Kazymyrov Homomorphic encryption 9 / 31

Partially homomorphic encryption schemes

• RSA, ElGamal work for multiplication

• Paillier, Benaloh work for addition

• Goldwasser-Micali works for XOR

• MGH’08 works for degree d polynomials

• ...

Oleksandr Kazymyrov Homomorphic encryption 10 / 31

(+, ·)-Homomorphic encryption

It would be really nice to have ...

• Plaintext space ZN

• Ciphertext space ZN

• Homomorphic Enc(x)/Eval(x) for both “+” and “·”
Enc(m1) + Enc(m2) ≡ Enc(m1 + m2 (mod N))

Enc(m1) · Enc(m2) ≡ Enc(m1 ·m2 (mod N))

• Then we can compute many useful functions on
ciphertexts

Oleksandr Kazymyrov Homomorphic encryption 11 / 31

Outline

1 Introduction

2 Partially homomorphic encryption

3 “Somewhat” homomorphic encryption

4 Fully homomorphic encryption

5 Public-key homomorphic encryption

6 Conclusions

Oleksandr Kazymyrov Homomorphic encryption 12 / 31

Breakthrough

• Genrty’09: a bootstrapping technique

? “Somewhat” homomorphic → Fully homomorphic

• Gentry also described a candidate “bootstrappable” scheme

? Based on ideal lattices

• Gentry’s scheme was complex

? it used advanced algebraic number theory

• Can it be simpler?

? polynomials, matrices ... integers

Oleksandr Kazymyrov Homomorphic encryption 13 / 31

(XOR, AND)-Homomorphic encryption

Why (XOR, AND)?

• because XOR and AND gives a Turing-complete
system

↪→ if we can compute XOR and AND on encrypted
bits

↪→ we can compute ANY function on encrypted
inputs

Oleksandr Kazymyrov Homomorphic encryption 14 / 31

A secret-key homomorphic encryption

Dijk, Gentry, Halevi and Vaikuntanathan [DGHV’10]

Secret key: large odd number p

Encryption steps of a bit m:

Choose at random large q and small r
Enc : c = p · q + 2 · r + m

↪→ 2 · r + m much smaller than p

↪→ ciphertext is close to a multiple of p

Dec : m ≡ (c mod p) mod 2

Parameters: |r | = n, |p| = n2 and |q| = n5

Oleksandr Kazymyrov Homomorphic encryption 15 / 31

Why is this homomorphic?

c1 = p · q1 + 2 · r1 + m1 c2 = p · q2 + 2 · r2 + m2

Adding (XORing) two encrypted bits

c1 + c2 = (q1 + q2) · p + 2 · (r1 + r2) + (m1 + m2)

↪→ if 2 · (r1 + r2) + (m1 + m2) much smaller than p

↪→ (c1 + c2 mod p) mod 2 ≡ m1 + m2 (mod 2)

Multiplying (ANDing) two encrypted bits

c1 · c2 =q1q2p
2 + 2q1pr2 + q1m2p + 2q2pr1 + 4r1r2 + 2r1m2+

q2m1p + 2m1r2 + m1m2 =

(q1q2p + 2q1r2 + q1m2 + 2q2r1 + q2m1)p+

2(2r1r2 + r1m2 + m1r2) + m1m2

Oleksandr Kazymyrov Homomorphic encryption 16 / 31

Why is this homomorphic?

c1 = p · q1 + 2 · r1 + m1 c2 = p · q2 + 2 · r2 + m2

Multiplying (ANDing) two encrypted bits (continue)

c1 · c2 = . . . = (q1q2p + 2q1r2 + q1m2 + 2q2r1 + q2m1)p+

2(2r1r2 + r1m2 + m1r2) + m1m2

c1q2 =q1q2p + 2q2r1 + q2m1

c2q1 =q1q2p + 2q1r2 + q1m2

c1 · c2 =(c1q2 + c2q1 − q1q2p)p + 2(2r1r2 + r1m2 + m1r2) + m1m2

↪→ if 2(2r1r2 + . . .) + m1m2 much smaller than p

↪→ (c1 · c2 mod p) mod 2 ≡ m1 ·m2 (mod 2)

Oleksandr Kazymyrov Homomorphic encryption 17 / 31

Dijk, Gentry, Halevi and Vaikuntanathan [DGHV’10]

Example
Secret key: choose p = 99

Encryption of m1 = 1 and m2 = 1:

Choose q1 = 37, r1 = 3 and q2 = 82, r2 = 2

c1 = 99 ·37+2 ·3+1 = 3670 c2 = 99 ·82+2 ·2+1 = 8123

Evaluate m1 ⊕m2 and m1 ·m2:

c1 + c2 = 11793 c1 · c2 = 29811410

Decryption results in:

m1 + m2 ≡ (11793 mod 99) mod 2 ≡ 12 mod 2 ≡ 0 (mod 2)
m1 ·m2 ≡ (29811410 mod 99) mod 2 ≡ 35 mod 2 ≡ 1 (mod 2)

Oleksandr Kazymyrov Homomorphic encryption 18 / 31

Two issues

• Ciphertext grows with each operation

↪→ if |c1| = |c2| = n then |c1 + c2| = n + 1 and |c1 · c2| = 2 · n
↪→ we can do lots of additions and some multiplications

(“somewhat” homomorphic encryption)

• Noise grows with each operation

↪→ it doubles on addition and squares on multiplication

↪→ after some operations (|noise| > p
2

) the ciphertext
becomes “unrecoverable”

Oleksandr Kazymyrov Homomorphic encryption 19 / 31

How secure is this?

Trivial attack
• if there was no noise (r1 = 0 and r2 = 0)

↪→ and encrypted two 0 bits, that is c1 = q1p, c2 = q2p

↪→ then the secret key p = GCD(q1p, q2p)

Other cases
• there is noise

↪→ the GCD attack doesn’t work

↪→ this is called the approximate GCD assumption

Oleksandr Kazymyrov Homomorphic encryption 20 / 31

Outline

1 Introduction

2 Partially homomorphic encryption

3 “Somewhat” homomorphic encryption

4 Fully homomorphic encryption

5 Public-key homomorphic encryption

6 Conclusions

Oleksandr Kazymyrov Homomorphic encryption 21 / 31

Gentry’s “bootstrapping” theorem

Theorem [Gentry’09]

If an encryption scheme can evaluate its own decryption circuit, then
it can evaluate everything.

Oleksandr Kazymyrov Homomorphic encryption 22 / 31

SHE → FHE
no

is
e

p
2 • Problem: addition and multiplication

increase noise

↪→ addition
↪→ multiplication

• Goal: somehow reduce the noise

• What is the best noise-reduction procedure?

↪→ decryption

↪→ Problem: key is secret
↪→ Goal: reduce noise without

publishing secret key

Oleksandr Kazymyrov Homomorphic encryption 23 / 31

Reduce noise “somewhat” secure

Decsk1(Evalpk1(f , {Encpk1(xi)})) = f ({xi})

Decsk1(Evalpk1(Encpk1 , {Encpk1(xi)})) = Encpk1({xi})
Decsk1(Evalpk1(Decsk1 ◦ Encpk1 , {Encpk1(xi)})) = {xi}

Decsk1(Evalpk1(Encpk2 ◦ Decsk1 ◦ Encpk1 , {Encpk1(xi)})) = Encpk2({xi})

Encpk2 ◦ Decsk1 ◦ Encpk1 = h

Decsk1(Evalpk1(h, {Encpk1(xi)})) = Encpk2({xi})

Decsk2 ◦ Encpk2({xi}) = {xi}

Oleksandr Kazymyrov Homomorphic encryption 24 / 31

Reduce noise

Decsk1 (Evalpk1 (f , {Encpk1 (xi)})) = f ({xi})
c1 = Encpk1 (m) c2 = Encpk1 (pk2) f = Enc

c3 = Evalpk1 (Enc , {c1, c2})
Decsk1 (c3) = Encpk2 (m)

c4 = Encpk1 (sk2) f = Dec

c5 = Evalpk1 (Dec , {c3, c4})
Decsk1 (c5) = m

Oleksandr Kazymyrov Homomorphic encryption 25 / 31

SHE → FHE
no

is
e

p
2

• Encpku and Decsku
• (XOR ,AND)t

• Encpki
• Decski
• Repeat

Oleksandr Kazymyrov Homomorphic encryption 26 / 31

Outline

1 Introduction

2 Partially homomorphic encryption

3 “Somewhat” homomorphic encryption

4 Fully homomorphic encryption

5 Public-key homomorphic encryption

6 Conclusions

Oleksandr Kazymyrov Homomorphic encryption 27 / 31

A public-key homomorphic encryption

Dijk, Gentry, Halevi and Vaikuntanathan [DGHV’10]

Secret key: large odd number p

Public key: a set X of large numbers {x1, x2, .., xi} such that
xj ≡ 2 · rj (mod p) xj ≡ 2 · rj (mod p)⇒ xj = p · qj + 2 · rj
Encryption steps of a bit m:

Choose at random r and for Y ⊂ X calculate b =
∑

Y
Encpk(m) : c = b + 2 · r + m
Decsk(c) : m ≡ (c mod p) mod 2

Evalpk(f , {ci}): as before

Oleksandr Kazymyrov Homomorphic encryption 28 / 31

Homomorphic properties

c1 = p ·
∑
k

qk + 2 ·
∑
k

rk + m1 c2 = p ·
∑
h

qh + 2 ·
∑
h

rh + m2

Addition of two encrypted bits

c1 + c2 = (
∑
k

qk +
∑
h

qh) · p + 2 · (
∑
k

rk +
∑
h

rh) + (m1 + m2)

m1 + m2 ≡ (c1 + c2 mod p) mod 2

Multiplication of two encrypted bits

Assume Q1 =
∑
k

qk , R1 =
∑
k

rk , Q2 =
∑
h

qh, R2 =
∑
h

rh

c1·c2 = (c1Q2+c2Q1−Q1Q2p)p+2(2R1R2+R1m2+m1R2)+m1m2

m1 ·m2 ≡ (c1 · c2 mod p) mod 2

Oleksandr Kazymyrov Homomorphic encryption 29 / 31

Example

Secret key: p = 233

Public key: X = {31955, 36362, 36627, 40098, 45718}
Encryption of m1 = 0 and m2 = 1:

Choose r1 = 18, r2 = 5 and Y = {31955, 40098}
c1 = 72053+2·18+0 = 72089 c2 = 72053+2·5+1 = 72064

Evaluate m1 ⊕m2 and m1 ·m2:

c1 + c2 = 144153 c1 · c2 = 5195021696

Decryption results in:

m1 ≡ (72089 mod 233) mod 2 ≡ 92 mod 2 ≡ 0 (mod 2)
m2 ≡ (72064 mod 233) mod 2 ≡ 67 mod 2 ≡ 1 (mod 2)

m1 +m2 ≡ (144153 mod 233) mod 2 ≡ 159 mod 2 ≡ 1 (mod 2)
m1 ·m2 ≡ (5195021696 mod 233) mod 2 ≡ 106 mod 2 ≡ 0 (mod 2)

Oleksandr Kazymyrov Homomorphic encryption 30 / 31

Conclusions

• Gentry gave the first feasible result

↪→ showing that it can be done “in principle”

• Bootstrapping technique allows transform SHE to FHE

↪→ reduce performance dramatically

• New FHEs without bootstrapping

↪→ potentially leads to practical implementations

• Lack of independent security checks

↪→ public key encryption with homomorphic properties

Oleksandr Kazymyrov Homomorphic encryption 31 / 31

	Introduction
	Partially homomorphic encryption
	``Somewhat'' homomorphic encryption
	A secret-key homomorphic encryption

	Fully homomorphic encryption
	Public-key homomorphic encryption
	Conclusions

