Homomorphic encryption

Oleksandr Kazymyrov

University of Bergen
Norway

20th of October, 2014

Outline

(1) Introduction
(2) Partially homomorphic encryption
(3) "Somewhat" homomorphic encryption

4 Fully homomorphic encryption
(5) Public-key homomorphic encryption
(6) Conclusions

Cloud computations

Encrypted cloud computations

Computing on encrypted data

It would be nice to be able to ...

- encrypt data in the cloud
\hookrightarrow while still allowing the cipud to search, sort, edit ...
- keep the data in theeroud in encrypted form \hookrightarrow withoytmeed to encrypt/decrypt every time
- enervpt queries to the cloud
\hookrightarrow while still allowing the cloud to process them \hookrightarrow the cloud returns encrypted answers

Cloud computations with homomorphic encryption

What is a homomorphic encryption (HE)?

- An encryption scheme: (KeyGen, Enc, Dec)

$$
\star(p k, s k)=\operatorname{KeyGen}(r n d), c_{i}=\operatorname{Enc}_{p k}\left(m_{i}\right), m_{i}=\operatorname{Dec}_{s k}\left(c_{i}\right)
$$

- A homomorphic encryption scheme: (KeyGen, Enc, Dec, EvalEval)

$$
\begin{aligned}
& \star\left\{c_{i}^{\prime}\right\}=\operatorname{Eval}_{p k}\left(f,\left\{c_{i}\right\}\right) \\
& \star\left\{c_{i}^{\prime}\right\}=\operatorname{Eval}_{p k}\left(f,\left\{c_{i}\right\}\right), \operatorname{Dec}_{s k}\left(\operatorname{Eval}_{p k}\left(f,\left\{\operatorname{Enc}_{p k}\left(x_{i}\right)\right\}\right)\right)=f\left(\left\{x_{i}\right\}\right)
\end{aligned}
$$

> P - partially
> S - "somewhat"
> F - full

Outline

(1) Introduction

(2) Partially homomorphic encryption

(3) "Somewhat" homomorphic encryption

44 Fully homomorphic encryption
(5) Public-key homomorphic encryption
(6) Conclusions

Partially homomorphic encryption schemes

RSA

KeyGen: $N=p \cdot q$, where p and q large prime numbers

$$
\operatorname{gcd}(e, \phi(N))=1 \Rightarrow d \cdot e \equiv 1(\bmod \phi(N))
$$

Enc: $c \equiv m^{e}(\bmod N)$
Dec: $m \equiv c^{d}(\bmod N)$
$\operatorname{Enc}\left(m_{1}\right) \cdot \operatorname{Enc}\left(m_{2}\right)=\operatorname{Enc}\left(m_{1} \cdot m_{2}\right):$

$$
\begin{aligned}
& c_{1} \equiv m_{1}^{e}(\bmod N) \quad c_{2} \equiv m_{2}^{e}(\bmod N) \\
& c_{1} \cdot c_{2} \equiv m_{1}^{e} \cdot m_{2}^{e} \equiv\left(m_{1} \cdot m_{2}\right)^{e}(\bmod N)
\end{aligned}
$$

Partially homomorphic encryption schemes

- RSA, EIGamal work for multiplication
- Paillier, Benaloh work for addition
- Goldwasser-Micali works for XOR
- MGH'08 works for degree d polynomials

(+,)-Homomorphic encryption

It would be really nice to have ...

- Plaintext space \mathbb{Z}_{N}
- Ciphertext space \mathbb{Z}_{N}
- Homomorphic $\operatorname{Enc}(x) / \operatorname{Eval}(x)$ for both " + " and "."

$$
\begin{aligned}
& \operatorname{Enc}\left(m_{1}\right)+\operatorname{Enc}\left(m_{2}\right) \equiv \operatorname{Enc}\left(m_{1}+m_{2}(\bmod N)\right) \\
& \operatorname{Enc}\left(m_{1}\right) \cdot \operatorname{Enc}\left(m_{2}\right) \equiv \operatorname{Enc}\left(m_{1} \cdot m_{2}(\bmod N)\right)
\end{aligned}
$$

- Then we can compute many useful functions on ciphertexts

Outline

(1) Introduction

(2) Partially homomorphic encryption
(3) "Somewhat" homomorphic encryption

4 Fully homomorphic encryption
(5) Public-key homomorphic encryption

6 Conclusions

Breakthrough

- Genrty'09: a bootstrapping technique
* "Somewhat" homomorphic \rightarrow Fully homomorphic
- Gentry also described a candidate "bootstrappable" scheme \star Based on ideal lattices
- Gentry's scheme was complex
* it used advanced algebraic number theory
- Can it be simpler?
^ polynomials, matrices ... integers

(XOR, AND)-Homomorphic encryption

Why (XOR, AND)?

- because XOR and AND gives a Turing-complete system
\hookrightarrow if we can compute XOR and AND on encrypted bits
\hookrightarrow we can compute ANY function on encrypted inputs

A secret-key homomorphic encryption

Dijk, Gentry, Halevi and Vaikuntanathan [DGHV'10]

Secret key: large odd number p
Encryption steps of a bit m :
Choose at random large q and small r
Enc: $c=p \cdot q+2 \cdot r+m$
$\hookrightarrow 2 \cdot r+m$ much smaller than p
\hookrightarrow ciphertext is close to a multiple of p
Dec : $m \equiv(c \bmod p) \bmod 2$
Parameters: $|r|=n,|p|=n^{2}$ and $|q|=n^{5}$

Why is this homomorphic?

$$
c_{1}=p \cdot q_{1}+2 \cdot r_{1}+m_{1} \quad c_{2}=p \cdot q_{2}+2 \cdot r_{2}+m_{2}
$$

Adding (XORing) two encrypted bits

$$
\begin{aligned}
& c_{1}+c_{2}=\left(q_{1}+q_{2}\right) \cdot p+2 \cdot\left(r_{1}+r_{2}\right)+\left(m_{1}+m_{2}\right) \\
& \hookrightarrow \text { if } 2 \cdot\left(r_{1}+r_{2}\right)+\left(m_{1}+m_{2}\right) \text { much smaller than } p \\
& \quad \hookrightarrow\left(c_{1}+c_{2} \bmod p\right) \bmod 2 \equiv m_{1}+m_{2}(\bmod 2)
\end{aligned}
$$

Multiplying (ANDing) two encrypted bits

$$
\begin{aligned}
c_{1} \cdot c_{2}= & q_{1} q_{2} p^{2}+2 q_{1} p r_{2}+q_{1} m_{2} p+2 q_{2} p r_{1}+4 r_{1} r_{2}+2{ }_{r} 1 m_{2}+ \\
& q_{2} m_{1} p+2 m_{1} r_{2}+m_{1} m_{2}= \\
& \left(q_{1} q_{2} p+2 q_{1} r_{2}+q_{1} m_{2}+2 q_{2} r_{1}+q_{2} m_{1}\right) p+ \\
& 2\left(2 r_{1} r_{2}+r_{1} m_{2}+m_{1} r_{2}\right)+m_{1} m_{2}
\end{aligned}
$$

Why is this homomorphic?

$$
c_{1}=p \cdot q_{1}+2 \cdot r_{1}+m_{1} \quad c_{2}=p \cdot q_{2}+2 \cdot r_{2}+m_{2}
$$

Multiplying (ANDing) two encrypted bits (continue)

$$
\begin{aligned}
c_{1} \cdot c_{2}= & \ldots=\left(q_{1} q_{2} p+2 q_{1} r_{2}+q_{1} m_{2}+2 q_{2} r_{1}+q_{2} m_{1}\right) p+ \\
& 2\left(2 r_{1} r_{2}+r_{1} m_{2}+m_{1} r_{2}\right)+m_{1} m_{2} \\
c_{1} q_{2}= & q_{1} q_{2} p+2 q_{2} r_{1}+q_{2} m_{1} \\
c_{2} q_{1}= & q_{1} q_{2} p+2 q_{1} r_{2}+q_{1} m_{2} \\
c_{1} \cdot c_{2}= & \left(c_{1} q_{2}+c_{2} q_{1}-q_{1} q_{2} p\right) p+2\left(2 r_{1} r_{2}+r_{1} m_{2}+m_{1} r_{2}\right)+m_{1} m_{2}
\end{aligned}
$$

\hookrightarrow if $2\left(2 r_{1} r_{2}+\ldots\right)+m_{1} m_{2}$ much smaller than p $\hookrightarrow\left(c_{1} \cdot c_{2} \bmod p\right) \bmod 2 \equiv m_{1} \cdot m_{2}(\bmod 2)$

Dijk, Gentry, Halevi and Vaikuntanathan [DGHV'10]

Example

Secret key: choose $p=99$
Encryption of $m_{1}=1$ and $m_{2}=1$:
Choose $q_{1}=37, r_{1}=3$ and $q_{2}=82, r_{2}=2$

$$
c_{1}=99 \cdot 37+2 \cdot 3+1=3670 \quad c_{2}=99 \cdot 82+2 \cdot 2+1=8123
$$

Evaluate $m_{1} \oplus m_{2}$ and $m_{1} \cdot m_{2}$:

$$
c_{1}+c_{2}=11793 \quad c_{1} \cdot c_{2}=29811410
$$

Decryption results in:

$$
m_{1}+m_{2} \equiv(11793 \bmod 99) \bmod 2 \equiv 12 \bmod 2 \equiv 0(\bmod 2)
$$

$$
m_{1} \cdot m_{2} \equiv(29811410 \bmod 99) \bmod 2 \equiv 35 \bmod 2 \equiv 1(\bmod 2)
$$

- Ciphertext grows with each operation
\hookrightarrow if $\left|c_{1}\right|=\left|c_{2}\right|=n$ then $\left|c_{1}+c_{2}\right|=n+1$ and $\left|c_{1} \cdot c_{2}\right|=2 \cdot n$
\hookrightarrow we can do lots of additions and some multiplications ("somewhat" homomorphic encryption)
- Noise grows with each operation
\hookrightarrow it doubles on addition and squares on multiplication
\hookrightarrow after some operations (\mid noise $\left\lvert\,>\frac{p}{2}\right.$) the ciphertext becomes "unrecoverable"

How secure is this?

Trivial attack

- if there was no noise ($r_{1}=0$ and $r_{2}=0$)
\hookrightarrow and encrypted two 0 bits, that is $c_{1}=q_{1} p, c_{2}=q_{2} p$
\hookrightarrow then the secret key $p=G C D\left(q_{1} p, q_{2} p\right)$

Other cases

- there is noise
\hookrightarrow the GCD attack doesn't work
\hookrightarrow this is called the approximate GCD assumption

Outline

(1) Introduction

(2) Partially homomorphic encryption

(3) "Somewhat" homomorphic encryption

4 Fully homomorphic encryption

(5) Public-key homomorphic encryption

(6) Conclusions

Gentry's "bootstrapping" theorem

Theorem [Gentry' 09]

If an encryption scheme can evaluate its own decryption circuit, then it can evaluate everything.

SHE \rightarrow FHE

- Problem: addition and multiplication increase noise
\hookrightarrow addition
\hookrightarrow multiplication
- Goal: somehow reduce the noise
- What is the best noise-reduction procedure?
\hookrightarrow decryption
\hookrightarrow Problem: key is secret
\hookrightarrow Goal: reduce noise without publishing secret key

Reduce noise "somewhat" secure

$$
\operatorname{Dec}_{s k_{1}}\left(\operatorname{Eval}_{p k_{1}}\left(f,\left\{\operatorname{Enc}_{p k_{1}}\left(x_{i}\right)\right\}\right)\right)=f\left(\left\{x_{i}\right\}\right)
$$

$$
\begin{aligned}
\operatorname{Dec}_{s k_{1}}\left(\operatorname{Eval}_{p k_{1}}\left(\operatorname{Enc}_{p k_{1}},\left\{\operatorname{Enc}_{p k_{1}}\left(x_{i}\right)\right\}\right)\right) & =\operatorname{Enc}_{p k_{1}}\left(\left\{x_{i}\right\}\right) \\
\operatorname{Dec}_{s k_{1}}\left(\operatorname{Eval}_{p k_{1}}\left(\operatorname{Dec}_{s k_{1}} \circ \operatorname{Enc}_{p k_{1}},\left\{\operatorname{Enc}_{p k_{1}}\left(x_{i}\right)\right\}\right)\right) & =\left\{x_{i}\right\}
\end{aligned}
$$

$$
\operatorname{Dec}_{s k_{1}}\left(\operatorname{Eva}_{p k_{1}}\left(E n c_{p k_{2}} \circ \operatorname{Dec}_{s k_{1}} \circ E n c_{p k_{1}},\left\{E n c_{p k_{1}}\left(x_{i}\right)\right\}\right)\right)=E n c_{p k_{2}}\left(\left\{x_{i}\right\}\right)
$$

$$
\begin{aligned}
E n c_{p k_{2}} \circ \operatorname{Dec}_{s k_{1}} \circ E n c_{p k_{1}} & =h \\
\operatorname{Dec}_{s k_{1}}\left(E v a l_{p k_{1}}\left(h,\left\{E n c_{p k_{1}}\left(x_{i}\right)\right\}\right)\right) & =E n c_{p k_{2}}\left(\left\{x_{i}\right\}\right)
\end{aligned}
$$

$$
\operatorname{Dec}_{s k_{2}} \circ \operatorname{Enc}_{p k_{2}}\left(\left\{x_{i}\right\}\right)=\left\{x_{i}\right\}
$$

Reduce noise

$$
\begin{aligned}
& \operatorname{Dec}_{s k_{1}}\left(E v a l_{p k_{1}}\left(f,\left\{\operatorname{Enc}_{p k_{1}}\left(x_{i}\right)\right\}\right)\right)=f\left(\left\{x_{i}\right\}\right) \\
& c_{1}=E n c_{p k_{1}}(m) \quad c_{2}=E n c_{p k_{1}}\left(p k_{2}\right) \quad f=E n c
\end{aligned}
$$

$$
\begin{gathered}
c_{3}=E v a l_{p k_{1}}\left(E n c,\left\{c_{1}, c_{2}\right\}\right) \\
\operatorname{Dec}_{s k_{1}}\left(c_{3}\right)=E n c_{p k_{2}}(m)
\end{gathered}
$$

$$
c_{4}=E n c_{p k_{1}}\left(s k_{2}\right) \quad f=D e c
$$

$$
c_{5}=E v a l_{p k_{1}}\left(\operatorname{Dec},\left\{c_{3}, c_{4}\right\}\right)
$$

$$
D e c_{s k_{1}}\left(c_{5}\right)=m
$$

SHE \rightarrow FHE

- $E n c_{p k_{u}}$ and $D e c_{s k_{u}}$
- $(X O R, A N D)^{t}$
- $E n c_{p k_{i}}$
- $D e c_{s k_{i}}$
- Repeat

Outline

(1) Introduction

(2) Partially homomorphic encryption
(3) "Somewhat" homomorphic encryption

4 Fully homomorphic encryption
(5) Public-key homomorphic encryption

6 Conclusions

A public-key homomorphic encryption

Dijk, Gentry, Halevi and Vaikuntanathan [DGHV'10]

Secret key: large odd number p
Public key: a set X of large numbers $\left\{x_{1}, x_{2}, . ., x_{i}\right\}$ such that
$x_{j} \equiv 2 \cdot r_{j}(\bmod p) x_{j} \equiv 2 \cdot r_{j}(\bmod p) \Rightarrow x_{j}=p \cdot q_{j}+2 \cdot r_{j}$
Encryption steps of a bit m :
Choose at random r and for $Y \subset X$ calculate $b=\sum Y$ $E n c_{p k}(m): c=b+2 \cdot r+m$
$\operatorname{Dec}_{s k}(c): m \equiv(c \bmod p) \bmod 2$
$\operatorname{Eval}_{p k}\left(f,\left\{c_{i}\right\}\right)$: as before

Homomorphic properties

$$
c_{1}=p \cdot \sum_{k} q_{k}+2 \cdot \sum_{k} r_{k}+m_{1} \quad c_{2}=p \cdot \sum_{h} q_{h}+2 \cdot \sum_{h} r_{h}+m_{2}
$$

Addition of two encrypted bits

$$
\begin{aligned}
& c_{1}+c_{2}=\left(\sum_{k} q_{k}+\sum_{h} q_{h}\right) \cdot p+2 \cdot\left(\sum_{k} r_{k}+\sum_{h} r_{h}\right)+\left(m_{1}+m_{2}\right) \\
& m_{1}+m_{2} \equiv\left(c_{1}+c_{2} \bmod p\right) \bmod 2
\end{aligned}
$$

Multiplication of two encrypted bits

Assume $Q_{1}=\sum_{k} q_{k}, R_{1}=\sum_{k} r_{k}, Q_{2}=\sum_{h} q_{h}, R_{2}=\sum_{h} r_{h}$
$c_{1} \cdot c_{2}=\left(c_{1} Q_{2}+c_{2} Q_{1}-Q_{1} Q_{2} p\right) p+2\left(2 R_{1} R_{2}+R_{1} m_{2}+m_{1} R_{2}\right)+m_{1} m_{2}$ $m_{1} \cdot m_{2} \equiv\left(c_{1} \cdot c_{2} \bmod p\right) \bmod 2$

Example

Secret key: $p=233$

Public key: $X=\{31955,36362,36627,40098,45718\}$
Encryption of $m_{1}=0$ and $m_{2}=1$:
Choose $r_{1}=18, r_{2}=5$ and $Y=\{31955,40098\}$

$$
c_{1}=72053+2 \cdot 18+0=72089 c_{2}=72053+2 \cdot 5+1=72064
$$

Evaluate $m_{1} \oplus m_{2}$ and $m_{1} \cdot m_{2}$:

$$
c_{1}+c_{2}=144153 \quad c_{1} \cdot c_{2}=5195021696
$$

Decryption results in:

$$
\begin{gathered}
m_{1} \equiv(72089 \bmod 233) \bmod 2 \equiv 92 \bmod 2 \equiv 0(\bmod 2) \\
m_{2} \equiv(72064 \bmod 233) \bmod 2 \equiv 67 \bmod 2 \equiv 1(\bmod 2) \\
m_{1}+m_{2} \equiv(144153 \bmod 233) \bmod 2 \equiv 159 \bmod 2 \equiv 1(\bmod 2) \\
m_{1} \cdot m_{2} \equiv(5195021696 \bmod 233) \bmod 2 \equiv 106 \bmod 2 \equiv 0(\bmod 2)
\end{gathered}
$$

Conclusions

- Gentry gave the first feasible result
\hookrightarrow showing that it can be done "in principle"
- Bootstrapping technique allows transform SHE to FHE
\hookrightarrow reduce performance dramatically
- New FHEs without bootstrapping
\hookrightarrow potentially leads to practical implementations
- Lack of independent security checks
\hookrightarrow public key encryption with homomorphic properties

