Algebraic-differential cryptanalysis and addition modulo 2^n

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum

September 5, 2014 Boolean Functions and Their Applications Rosendal, Norway

Goal

- Describe an encryption primitive by a system of equations.
- Find all variables including keys.

Goal

- Describe an encryption primitive by an equation system with maximal number of equations and minimal number of variables.
- Find all variables including keys.

Goal

- Describe an encryption primitive by an equation system with the minimal algebraic degree, maximal number of linear independent equations and minimal number of variables.
- Find all variables including keys.

A round routine of an SP network

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

< ロ > < 同 > < 回 > < 回 > < □ > <

A round routine of an SP network

$$\begin{aligned} x_0 x_1 + x_1 y_0 + y_1 + 1 &= 0 \\ x_0 x_1 + x_1 y_0 + x_1 &= 0 \\ x_0 x_1 + x_0 + y_0 y_1 &= 0 \\ x_1 y_0 + y_0 y_1 + y_0 &= 0 \\ x_1 y_1 &= 0 \\ x_0 y_1 + y_0 y_1 &= 0 \\ x_0 y_0 + y_0 y_1 &= 0 \end{aligned}$$

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum Algebraic-differential cryptanalysis and addition modulo 2ⁿ

Two and more rounds

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

イロト イポト イヨト イヨト

э

Two and more rounds

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

ヘロン 人間 とくほと 人ほとう

Cryptoprimitives with addition modulo 2^n

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

• • = • • = •

Cryptoprimitives with addition mod 2^n

- IDEA
- ARX (Skein, Theefish, ...)
- SNOW 2.0
- GOST 28147-89
- STB 34.101.31-2011
- Kalyna
- GOST 34.11-2012
- ...

Addition modulo 2^n

- Nonlinear
- Widespread values are n = 32 and n = 64
- Reduced performance comparing to XOR
- Mostly used in ARX constructions
- CCZ-equivalent to a quadratic function
- Described by a system of quadratic equations

Description of mod 2^n by a system of equations

$$\begin{cases} a_i + a_i r_i + a_i r_{i+1} + a_i a_{i+1} + a_i b_{i+1} + r_i r_{i+1} + r_i a_{i+1} + r_i b_{i+1} = 0\\ b_i + b_i r_i + b_i r_{i+1} + b_i a_{i+1} + b_i b_{i+1} + r_i r_{i+1} + r_i a_{i+1} + r_i b_{i+1} = 0\\ a_i r_i + b_i r_i + a_i b_i + a_i + b_i + r_{i+1} + a_{i+1} + b_{i+1} = 0 \end{cases}$$

Addition modulo 2^n and XOR

Approximation by XOR

$$Pr(x \boxplus y = x \oplus y) = \frac{4 \cdot 3^{n-1}}{2^{2n}}$$

n	4	6	8	32	64
Pr	0.422	0.237	0.133	$10^{-3.87}$	$10^{-7.87}$

Probability of a carry bit

$$Pr(carry) = \frac{1}{2} - \frac{1}{2^{n+1}}$$

4 E b

Representations of routines with \boxplus (I)

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

э

Representations of routines with \boxplus (II)

∃ → < ∃ →</p>

Addition plus substitution (II)

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

∃ → < ∃</p>

Algebraic description (II)

伺 ト く ヨ ト く ヨ ト

э

Addition plus substitution (II)

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

Representations of routines with \boxplus (II)

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

A B + A B +

Two rounds with differentials

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

・ 同 ト ・ ヨ ト ・ ヨ ト

Two rounds with differentials

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

・ 同 ト ・ ヨ ト ・ ヨ ト

GOST 28147-89

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

- 《圖》 《문》 《문》

An algebraic-differential attack on GOST 28147-89

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum

Algebraic-differential cryptanalysis and addition modulo 2ⁿ

An algebraic-differential attack on GOST 28147-89

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum $Algebraic-differential cryptanalysis and addition modulo <math>2^n$

< A ▶

→ □ → → □ →

Number of active S-boxes after \boxplus

Theorem

Suppose f, s, v and c are fixed, stop, variable and constant bits, respectively. Then the probability that f-bits are not affected by addition modulo 2^n is

$$Pr(f \text{ are the same}) = 1 - \frac{2^{|v|} - 1}{2^{|s||v|}}$$

Open problems

- How to use the known CCZ-equivalence property of mod 2^n on real ciphers?
- Are there more equations for the description of addition modulo 2^n by a system of equations?
- What about theoretical bounds of $\oplus \mapsto \boxplus$, $\boxplus \mapsto \oplus$ and $\boxplus \mapsto \boxplus$?
- Find a theoretical example of an (n, n) permutation function limited by δ -uniformity, nonlinearity and algebraic immunity.