Algebraic-differential cryptanalysis and addition modulo 2^{n}

Oleksandr Kazymyrov, Roman Oliynykov and Håvard Raddum

September 5, 2014
Boolean Functions and Their Applications
Rosendal, Norway

Algebraic Attacks

Goal

- Describe an encryption primitive by a system of equations. - Find all variables including keys.

Algebraic Attacks

Goal

- Describe an encryption primitive by an equation system with maximal number of equations and minimal number of variables.
- Find all variables including keys.

Algebraic Attacks

Goal

- Describe an encryption primitive by an equation system with the minimal algebraic degree, maximal number of linear independent equations and minimal number of variables.
- Find all variables including keys.

$$
\left\{\begin{array}{l}
x_{0} x_{1}+x_{1} y_{0}+y_{1}+1=0 \\
x_{0} x_{1}+x_{1} y_{0}+x_{1}=0 \\
x_{0} x_{1}+x_{0}+y_{0} y_{1}=0 \\
x_{1} y_{0}+y_{0} y_{1}+y_{0}=0 \\
x_{1} y_{1}=0 \\
x_{0} y_{1}+y_{0} y_{1}=0 \\
x_{0} y_{0}+y_{0} y_{1}=0
\end{array}\right.
$$

Two and more rounds

Cryptoprimitives with addition modulo 2^{n}

Cryptoprimitives with addition mod 2^{n}

- IDEA
- ARX (Skein, Theefish, ...)
- SNOW 2.0
- GOST 28147-89
- STB 34.101.31-2011
- Kalyna
- GOST 34.11-2012

Addition modulo 2^{n}

- Nonlinear
- Widespread values are $n=32$ and $n=64$
- Reduced performance comparing to XOR
- Mostly used in ARX constructions
- CCZ-equivalent to a quadratic function
- Described by a system of quadratic equations

Description of mod 2^{n} by a system of equations

$$
\left\{\begin{array}{l}
a_{i}+a_{i} r_{i}+a_{i} r_{i+1}+a_{i} a_{i+1}+a_{i} b_{i+1}+r_{i} r_{i+1}+r_{i} a_{i+1}+r_{i} b_{i+1}=0 \\
b_{i}+b_{i} r_{i}+b_{i} r_{i+1}+b_{i} a_{i+1}+b_{i} b_{i+1}+r_{i} r_{i+1}+r_{i} a_{i+1}+r_{i} b_{i+1}=0 \\
a_{i} r_{i}+b_{i} r_{i}+a_{i} b_{i}+a_{i}+b_{i}+r_{i+1}+a_{i+1}+b_{i+1}=0
\end{array}\right.
$$

Addition modulo 2^{n} and XOR

- Approximation by XOR

$$
\operatorname{Pr}(x \boxplus y=x \oplus y)=\frac{4 \cdot 3^{n-1}}{2^{2 n}}
$$

n	4	6	8	32	64
Pr	0.422	0.237	0.133	$10^{-3.87}$	$10^{-7.87}$

- Probability of a carry bit

$$
\operatorname{Pr}(\operatorname{carr} y)=\frac{1}{2}-\frac{1}{2^{n+1}}
$$

Representations of routines with \boxplus (I)

Representations of routines with \boxplus (II)

Addition plus substitution (II)

Algebraic description (II)

Addition plus substitution (II)

Representations of routines with \boxplus (II)

Two rounds with differentials

Two rounds with differentials

GOST 28147-89

An algebraic-differential attack on GOST 28147-89

8
8

An algebraic-differential attack on GOST 28147-89

8 8/7/6/5/4/3/211

Theorem

Suppose f, s, v and c are fixed, stop, variable and constant bits, respectively. Then the probability that f-bits are not affected by addition modulo 2^{n} is

$$
\operatorname{Pr}(f \text { are the same })=1-\frac{2^{|v|}-1}{2^{|s||v|}}
$$

Open problems

- How to use the known CCZ-equivalence property of mod 2^{n} on real ciphers?
- Are there more equations for the description of addition modulo 2^{n} by a system of equations?
- What about theoretical bounds of $\oplus \mapsto \boxplus$, $\boxplus \mapsto \oplus$ and $\boxplus \mapsto \boxplus$?
- Find a theoretical example of an (n, n) permutation function limited by δ-uniformity, nonlinearity and algebraic immunity.

