
M E T H O D S A N D T O O L S
F O R A N A LY S I S O F

S Y M M E T R I C C RY P T O G R A P H I C
P R I M I T I V E S

Oleksandr Kazymyrov

dissertation for

the degree of philosophiae doctor

the selmer center

department of informatics

university of bergen

norway

D E C E M B E R 1 , 2 0 1 4

AC K N O W L E D G M E N T S

It is impossible to thank all those who have, directly or indirectly, helped
me with this thesis, giving of their time and experience. I wish to use this
opportunity to thank some of them.

Foremost, I would like to express my very great appreciation to my main
supervisor Tor Helleseth, who has shared his extensive knowledge and expe-
rience, and made warm conditions for the comfortable research in one of the
rainiest cities in the world. I owe a great deal to Lilya Budaghyan, who was
always ready to offer assistance and suggestions during my research. Advice
given by Alexander Kholosha has been a great help in the early stages of my
work on the thesis.

My grateful thanks are also extended to all my friends and colleagues at
the Selmer Center for creating such a pleasant environment to work in. I am
particularly grateful to Kjell Jørgen Hole, Matthew G. Parker and Håvard
Raddum for the shared teaching experience they provided. Moreover, I am
very grateful for the comments and propositions given by everyone who
proofread my thesis. In addition, I would like to thank the administrative
staff at the Department of Informatics for their immediate and exhaustive
solutions of practical issues.

I wish to acknowledge the staff at the Department of Information Tech-
nologies Security, Kharkiv National University of Radioelectronics, Ukraine,
especially Roman Oliynykov, Ivan Gorbenko, Viktor Dolgov and Oleksandr
Kuznetsov for their patient guidance, enthusiastic encouragement and useful
critiques.

I would like to offer my special thanks to my wife, who made invaluable
contributions, including reading of the early versions of the thesis and making
extremely beneficial and penetrating observations on the research results.

i

AB S T R A C T

The development of modern cryptography is associated with the emergence
of computing machines. Since specialized equipment for protection of sensi-
tive information was initially implemented only in hardware, stream ciphers
were widespread. Later, other areas of symmetric and asymmetric cryptogra-
phy were established with the invention of general-purpose processors. In
particular, such symmetric cryptographic primitives as block ciphers, mes-
sage authentication codes (MACs), authenticated ciphers and others began to
develop rapidly. Today various cryptographic algorithms are commonly used
in everyday life to protect private data.

Design and analysis of advanced symmetric cryptographic primitives re-
quire a lot of time and resources. This is related to many factors, mainly to the
cryptanalysis of prospective encryption algorithms under development. Every
year new and modified attacks are published, leading to a rapid increase in
the quantity of requirements and criteria imposed on cryptoprimitives.

Most of this thesis is devoted to analysis and improvement of cryptographic
attacks and corresponding criteria for basic components. Almost all modern
cryptoprimitives use nonlinear mappings for protection against advanced at-
tacks. In connection with that a new method was proposed for the generation
of random substitutions (S-boxes) with extreme cryptographic indicators that
can be used in the next-generation ciphers to provide high and ultra-high
security levels. In addition, several criteria imposed on S-boxes used in block
ciphers were analyzed and their significance for block ciphers was proven.
It is worth mentioning a practical method of testing two vectorial Boolean
functions and a universal tool for checking properties of arbitrary binary
nonlinear components presented in papers gathered in this thesis.

Another part of the thesis is dedicated to the cryptanalysis of hash functions
as well as block and stream ciphers. To be more precise, an algebraic attack
based on a binary decision diagram (BDD) was performed on the reduced
Data Encryption Standard (DES), a scaled-down version of Advanced Encryp-
tion Standard (AES) and extended affine (EA) equivalence problem. Moreover,
an algebraic approach was used to reconstruct an initial representation of
the current Russian hash standard GOST 34.11-2012. Finally, a backward
states tree method has been used to analyze stream ciphers based on the
combination principle of linear and nonlinear feedback registers.

iii

L I S T O F PA P E R S

[I] Kazymyrov, O., Raddum, H.: Algebraic attacks using binary decision
diagrams. In Pre-proceedings of BalkanCryptSec 2014, pp. 31–44, 2014.

[II] Eilertsen, A. M., Kazymyrov, O., Kazymyrova, V., Storetvedt,
M.: A Sage library for analysis of nonlinear binary mappings. In Pre-
proceedings of Central European Conference on Cryptology (CECC14), pp.
69–78, 2014.

[III] Kazymyrov, O., Kazymyrova, V., Oliynykov, R.: A method for
generation of high-nonlinear S-boxes based on gradient descent. In
Mathematical Aspects of Cryptography, vol. 5, pp. 71–78. Steklov Mathe-
matical Institute, 2014.

[IV] Kazymyrov, O., Kazymyrova, V.: Algebraic aspects of the Russian
hash standard GOST R 34.11-2012. In Pre-proceedings of 2nd Workshop on
Current Trends in Cryptology (CTCrypt 2013), pp. 160–176, 2013.

[V] Kazymyrov, O., Kazymyrova, V.: Extended criterion for absence of
fixed points. In Pre-proceedings of 2nd Workshop on Current Trends in
Cryptology (CTCrypt 2013), pp. 177–191, 2013.

[VI] Helleseth, T., Jansen, C.J.A., Kazymyrov, O., Kholosha, A.:
State space cryptanalysis of the MICKEY cipher. In Information Theory
and Applications Workshop (ITA), pp. 1–10. Institute of Electrical and
Electronics Engineers (IEEE), 2013.

[VII] Budaghyan, L., Kazymyrov, O.: Verification of restricted EA-equivalence
for vectorial Boolean functions. In Özbudak, F., Rodríguez-Henríquez,
F. (eds.), Arithmetic of Finite Fields, vol. 7369 of Lecture Notes in Computer
Science, pp. 108–118. Springer Berlin Heidelberg, 2012.

v

CO N T E N T S

AC K N O W L E D G M E N T S I

AB S T R A C T I I I

L I S T O F PA P E R S V

Introduction

1. TH E S TAT E -O F -T H E -A RT O F S Y M M E T R I C C RY P TO L O G Y 3
1.1. Global development of symmetric cryptography 4
1.2. General design ideas of cryptographic primitives 6

1.2.1. Block ciphers . 6
1.2.2. Authenticated ciphers . 8
1.2.3. Stream ciphers . 9
1.2.4. Cryptographic hash functions 10

1.3. Methods of cryptanalysis . 11
1.3.1. Differential . 11
1.3.2. Linear . 12
1.3.3. Algebraic . 12
1.3.4. Related-key . 14
1.3.5. Combination of the methods 14
1.3.6. Other directions . 15

2 . B I N A RY N O N L I N E A R M A P P I N G S I N C RY P TO G R A P H Y 16
2.1. Definitions and notations . 16
2.2. Cryptographic properties of vectorial Boolean functions 17
2.3. Equivalence of vectorial Boolean functions 20

3 . SU M M A RY O F PA P E R S 21
3.1. Paper I . 21
3.2. Paper II . 22
3.3. Paper III . 24
3.4. Paper IV . 26
3.5. Paper V . 27
3.6. Paper VI . 28
3.7. Paper VII . 29

4. CO N C L U S I O N S 30

RE F E R E N C E S 32

Scientific Results

PA P E R I 45

PA P E R I I 69

PA P E R I I I 87

PA P E R IV 99

PA P E R V 119

PA P E R VI 135

PA P E R VII 163

————————–

Introduction

Introduction

1. TH E S TAT E -O F -T H E -A RT O F S Y M M E T R I C C RY P TO L O G Y

One of the strategic priorities of any country is to adopt comprehensive
measures to protect the national information space [1]. The main feature of
this trend is to increase performance and to improve security in telecom-
munication systems. Fast and secure access to information and computing
resources, most of which are a part of the Internet, may be regarded as one of
the requirements of a developed country.

Information technologies (IT) are an essential part of our daily lives. Ef-
ficiency of application and operation of information systems depend on
their security and reliability. There are many fields where unpredictable or
abnormal operation of telecommunication systems may result in serious con-
sequences. These include management and control systems of water, gas
and energy supply; petroleum and nuclear industries; transport systems, etc.
Over the past few decades the number of publications and projects related to
different aspects of information security has considerably increased.

The emergence of new problems requires improved methods to solve them
[2, 3]. Until recently, cryptographic tools were available only to special state
authorities. Today they are used in everyday life in the process of creating,
sending, receiving, processing, storing and destroying data [3, 4].

Block ciphers play an important role in complex information systems [3, 5].
They are widely used due to their high efficiency and low implementation
complexity. In addition to providing confidentiality, block ciphers realize mes-
sage authentication codes (MACs), hash functions, pseudorandom number
generators (PRNG) and authentication protocols [3, 6]. Thus, block ciphers
are used in most modern symmetric cryptographic primitives. Nonetheless,
special algorithms have many advantages. For example, to provide secure
high-speed transmission of information, especially when the data processing
is in hardware, stream ciphers are used. Due to their structure they are opti-
mized for hardware platforms by default. At the same time their performance
can be ten times better than of block ciphers.

Many international competitions for choosing hash functions, block and
stream ciphers have shown that the task of creating a secure cryptographic
algorithm is rather complicated. For example, all stream ciphers submitted to
the New European Schemes for Signatures, Integrity and Encryption (NESSIE)
were theoretically broken [7]. At the same time, the role of the cryptographic
community should not be underestimated. Every year more and more people
invent new and advanced approaches to solve cryptographic problems.

3

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

In view of the above, the goal of this thesis is to improve the resistance of
modern iterative cryptographic primitives to advanced attacks through the
development of methods and tools of cryptanalysis.

1 .1 . GL O B A L D E V E L O P M E N T O F S Y M M E T R I C C RY P TO G R A P H Y

At the end of the 20th century a number of successful theoretical attacks
allowed the block cipher DES to be broken [8]. A bit later practical imple-
mentations emerged to find the encryption key in a reasonable time [9]. As a
consequence in the USA in 1997, the Advanced Encryption Standard (AES)
competition was launched [10]. The main objective of the competition was the
selection of a new generation block cipher as the standard. After several years
of research the algorithm Rijndael was selected as a winner. This cipher was
became the encryption standard FIPS-197, also known as AES [11]. Rijndael
ranked first due to its high-level resistance against known attacks, simple
description, and high performance on most platforms of that time.

A similar European open competition NESSIE was launched in February
2000 [5, 7]. The main task of the project was the selection of the best cryp-
tographic primitives among submitted candidates from around the world.
Security, performance, and flexibility were offered as the main criteria. After
the competition a recommended list containing block ciphers, hash functions,
MACs and digital signature algorithms for industrial usage was created [7].

Along with other cryptographic algorithms six stream ciphers were sub-
mitted to NESSIE [7]. All of them as mentioned above were theoretically
broken. This led, in November 2004, to a separate project called eSTREAM,
whose main task was to choose one or more stream ciphers for use in the
business sector [12]. It should be mentioned that the stream ciphers were
divided into two separate categories. While the first one consisted of soft-
ware oriented primitives, another contained algorithms adapted for hardware
applications. After four years of research, 4 ciphers were selected for each
category. However, in 2008 the stream cipher F-FCSR-H v2 was excluded from
the list because of vulnerabilities [13].

In parallel with NESSIE a similar research was carried out by the Japanese
government under CRYPTREC [14]. As a result of this analysis the best algo-
rithms were selected for data protection. As of today many cryptoprimitives
have been recommended for use in both government (e.g., AES, Camellia,
KCipher-2, ECDH, SHA-512, HMAC, etc.) and business (e.g., MISTY1, MUGI,
SC2000, PC-MAC-AES, PSEC-KEM, etc.) sectors [15].

4

Introduction

In post-Soviet states the block cipher GOST 28147 is used [16]. It was
adopted in 1989 and has been outdone in performance, usability and other
characteristics by modern ciphers, including AES. In the past few years
theoretical attacks on this encryption algorithm have been successfully carried
out. The complexity of finding the key was reduced from 2256 to 2225 [17, 18].
However, the complexity of 2225 is unachievable for modern computers so
GOST 28147 remains practically secure[19].

However, long before the proposed attacks the cryptographic community
and government agencies of these countries began to think about changing
the encryption algorithm. Since 2003 Belarus has used a new standard for
confidentiality and integrity [20]. It includes a block cipher and its modes of
operation, a message authentication code and a hash function.

In order to find an alternative to GOST 28147 the State Service of Special
Communication and Information Protection of Ukraine announced in 2006 an
open competition to design a prototype of a block cipher for the new standard
[21]. One of the main requirements for the prospective cipher was a high-level
of resistance against known and promising types of cryptanalytic attacks. At
the same time, it was necessary to achieve a performance not less than the
previous standard. In practice the designers tried to beat AES. According to
the results of the competition in 2009 the cipher Kalyna was allowed to be
used for protection of nongovernmental information [3, 21]. This cipher with
improvements is now undergoing a formal assessment, and is at the stage of
adoption as the standard [22].

In November 2007 the National Institute of Standards and Technology
(NIST) opened a competition to develop a hash function SHA-3, which would
complement the existing two versions [23]. In analogy with AES, NIST teamed
cryptanalysts and developers from around the world in order to select one
or more additional hash algorithms. In October 2012 it was announced that
SHA-3 will be based on the algorithm Keccak [24]. Two years later a draft
version of a new standard was published [25].

Unlike the USA, Russia did not announce an open competition, and used
the hash function Stribog (Streebog) as a prototype [26–28]. This algorithm is
the only known version of the draft state standard. Since January 1st, 2013
GOST R 34.11-2012 came into effect, replacing the earlier version [29]. Further
development of block ciphers in Russia was presented at CTCrypt’14 [30].
According to the article the current standard GOST 28147 will be used in
hardware, and the new block cipher Kuznechik (Grasshopper) will target
software.

5

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

A similar path has been chosen by Ukraine in the development of the
hashing algorithm. Drawing on the experience gained from cryptanalysis of
block ciphers and considering finished competitions, Grøstl was taken as a
basis for the new hash function. Together with Keccak, Grøstl is one of five
finalists of SHA-3 [24, 31]. The main difference of the Ukrainian hash function
is the usage of Kalyna with 512-bit block and key length instead of AES in the
functions P and Q [31]. As in the case of the block cipher, the hash function is
at the final stage of the standardization procedure.

In recent years the question about improvement of methods providing se-
curity and integrity of transmitted data simultaneously has been increasingly
raised. In connection with this, the Competition for Authenticated Encryption:
Security, Applicability, and Robustness (CAESAR) was organized [32]. Over
the next few years, cryptologists, and software and hardware specialists from
all over the world will select a modern authenticated cipher.

1 .2 . GE N E R A L D E S I G N I D E A S O F C RY P TO G R A P H I C P R I M I T I V E S

1.2 .1 . BL O C K C I P H E R S

Let E : {0, 1}l × {0, 1}k 7→ {0, 1}l be a function which takes a key K of length
k bits, an input message (plaintext) M of length l bits and returns an output
message (ciphertext) E(M, K). For each K let EK : {0, 1}l 7→ {0, 1}l be a
function defined by EK(M) = E(M, K). Then E is a block cipher if EK and
E−1

K are efficiently computable and EK is a permutation for every K.
Most modern block ciphers are iterative (Fig. 1). A round function is usually

used multiple times with different parameters (round keys). An arbitrary
iterative block cipher can be mathematically described as follows

EK(M) = PWkr+1 ◦
r

∏
i=2

(Rki
) ◦ IWk1(M),

where R, IW and PW are a round routine, a prewhitening and a postwhitening
routine, respectively. In Fig. 1 the key expansion is an algorithm that takes a
master key K as input and produces the subkeys k1, k2, . . . , kr+1 for all stages
of encryption.

A mixing key routine of a block cipher is an algorithm which injects a round
key into an encryption routine. In the majority of modern block ciphers the
mixing key function is implemented using the XOR operation because of its
low-cost implementation.

6

Introduction

Fig. 1: The general structure of an iterative block cipher

To be an advanced algorithm, a modern block cipher should satisfy the
following requirements [5]

• the complexity of the encryption and decryption has to be commensu-
rate with the current standards;

• be protected against all known and prospective attacks;

• have high performance on widespread platforms.

It is quite challenging to satisfy the last point. Nevertheless, there are many
publications regarding high performance implementations of AES. This is
due to the fact that it is the most widespread block cipher and therefore the
most optimized cryptographic algorithm for variety of platforms. However,
getting into the Internet of things era, where devices communicate with each
other via secure channels, it became necessary to have lightweight primitives.
A lightweight cryptographic algorithm possesses a practical security level
with enough performance in resource-limited settings: clock-cycles, area or
energy [33].

7

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

1.2 .2 . AU T H E N T I C AT E D C I P H E R S

There has been insufficient time to identify the generalized model of authen-
ticated ciphers. There are only general structures such as encrypt-then-MAC,
encrypt-and-MAC and MAC-then-encrypt [34]. Therefore, this section will
focus on the general ideas and issues underlying these algorithms.

As mentioned earlier, in addition to confidentiality of transmitted informa-
tion it is often required to ensure its integrity. Due to limitations of equipment
and large amounts of processed data, the application of asymmetric cryp-
tography for these purposes is not always possible. Therefore, an encrypted
message is processed by a message authentication code to produce a tag [35].
Lots of modern MACs are based on block ciphers. These belong to the group
of symmetric algorithms. Some of them are standardized and widely used in
everyday life [36].

In general MACs only provide data integrity. Moreover, the complexities of
the tag calculation and the message encryption are commensurable. In other
words, to provide both confidentiality and integrity, two transformations of
approximately equal complexity must be performed sequentially. In order
to reduce the amount of transformations and system bandwidth, special
algorithms have been developed [36]. The next generation authenticated
cipher will be chosen after CAESAR.

Most authenticated schemes are nonce-based, i.e. an initialization vector
(nonce) is transmitted together with data [37]. This solution helps to protect
the algorithm against replay attacks and to use a pre-shared key for many
messages. In addition, authenticated ciphers can operate in associated data
mode [38]. This mode allows to encrypt only part of the data while the tag
is generated for the entire message. This property is a useful addition in
many situations where part of the message must be transmitted in plaintext.
An Internet protocol (IP) packet is the most obvious example due to its
widespread distribution. While the body of the packet can contain encrypted
data, service information (e.g., data ports, IP addresses of sender and recipient,
etc) has to be in clear to maximize data transfer speed.

From a security point of view the requirements imposed on authenticated
ciphers include everything from block ciphers and message authentication
codes [39]. Game theory is often used to prove the security of algorithms.
However, all specific attacks applied to block ciphers and MACs can be easily
adapted to authenticated ciphers (see Section 1.3). Security evaluation of

8

Introduction

Fig. 2: The overall structure of a stream cipher

authenticated encryption algorithms therefore is more complex and conse-
quently requires more resources.

1 .2 .3 . ST R E A M C I P H E R S

The main feature of stream ciphers is generation of random numbers (keystream)
based on an initialization vector and key. Further, the plaintext is divided
into chunks and added with the keystream using modulo operations to form
the ciphertext. Since stream ciphers are typically targeted at hardware imple-
mentations, the XOR operation is often used instead of additional modulo
[12, 40, 41].

Modern stream ciphers consist of linear and nonlinear feedback shift regis-
ters (LFSRs and NLFSRs), and a filter function to achieve maximum resistance
against advanced attacks. Fig. 2 depicts the overall structure of a stream
cipher.

In most cases, registers do not work independently, and operate in so-called
mutual control mode. In other words, the states of the registers depend not
only on their previous states, but also on other components of the cipher. If
the keystream is generated randomly and without period, then an adversary
cannot even theoretically recover the ciphertext [6, 42]. However, the practical
application of such a scheme is too limited. Therefore, a key of fixed length is
used to generate a pseudorandom sequence satisfying a number of criteria,
including Golomb’s randomness postulates [41].

9

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Many designers of stream ciphers provide security proofs using a number
of assumptions, which hypothetically could lead to vulnerabilities [12]. As a
consequence the question regarding the theoretical proof of the security of
NLFSRs-based ciphers remains open.

1 .2 .4 . CRY P TO G R A P H I C H A S H F U N C T I O N S

A hash function is a method for mapping data of arbitrary size to a fixed-
length value (hash code or hash value). Cryptographic hash functions are
the subset of hash functions, which are resistant to at least 3 attacks: pre-
image, second pre-image and collision [2, 6]. These criteria are classic and the
most general, i.e. applicable for any cryptographic hash function. However,
the practical application introduces it’s own criteria for these cryptographic
primitives. For example, performance and protection against all known attacks
were the main criteria while selecting functions at the SHA-3 competition
[23].

The existence of one-way hash functions has not been theoretically proven.
It is assumed that the determination of the input message is a time consuming
task. For example, the “birthday paradox” attack allows to find a collision
after about 2

n
2 calls of the hash function with an n-bit length hash code.

Therefore, the hash function has resistance to the collision attack if and only
if there is no algorithm with a complexity less than 2

n
2 [2].

By default (sometimes used as a criterion) it is assumed that a slightest
change (e.g., bit inverse) in the input message leads to significant changes
in the hash value. This criterion is also known as the avalanche effect and
plays a very important role when the hash function is used for generation of
pseudorandom sequences [43].

Modern cryptographic hash functions have three main stages to compute
the hash code (Fig. 3) [24]

• initialization based on IV (IS);

• partitioning the input message (M) into blocks and consistent applica-
tion of a compression function (CF) to each of them;

• final transformations and generation of the output (FS).

Most modern hash functions were constructed using the Merkle-Damgård
scheme [6, 44, 45]. In the last 10 years many undesirable features have been
found in this approach, including the length extension attack [46]. During the

10

Introduction

Fig. 3: The high-level scheme of a hash function

SHA-3 competition, a well-proven alternative construction called sponge was
introduced [47]. It can be used to design authenticated and stream ciphers,
message authentication codes, and other symmetric primitives. Moreover, this
method of construction is the basis of the algorithm Keccak, which became
the winner of SHA-3 [24].

1 .3 . ME T H O D S O F C RY P TA N A LY S I S

1.3 .1 . D I F F E R E N T I A L

Differential cryptanalysis implies the existence of ordered pairs (α, β) such
that a randomly chosen plaintext M and the corresponding value M − α
map to ciphertexts C and C′, respectively [48]. Denote by β = C − C′ the
difference between the ciphertexts, where “−” is the operation inverse to
the mixing key routine. The ordered pair (α, β) is called the differential.
The set of differentials at different rounds for a certain cipher is termed
the differential characteristic [5, 48]. The attack is more effective for higher
differential probability (at the same time not equal to 1). While the most
general case is considered in [49, 50], in this section it is assumed that “−” is
equivalent to XOR.

To apply the attack a difference distribution table is calculated for a given
substitution. The maximum value of the table (MDT) excluding the value of
the first row and first column, is calculated as follows [51]

δ = max
α∈Fn

2 ,α 6=0,β∈Fm
2

#{x | S(x)⊕ S(x⊕ α) = β},

where S is an S-box used in a cryptographic primitive.
During the differential attack an adversary learns how the difference of

plaintexts affects the resulting difference (ciphertexts) [5]. The differential

11

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

propagated with the highest probability is used to find a round key. For
the most modern block ciphers it is enough to break the entire encryption
algorithm.

1 .3 .2 . L I N E A R

Linear cryptanalysis is based on the Piling-up lemma and was first applied to
the block cipher FEAL [52]. Later Nyberg described the concept of the attack
and Matsui has shown a practical example for the block cipher DES [53, 54].
The basic idea of linear cryptanalysis is based on the following statement.
For randomly chosen bits of the key (k), plaintext (m) and ciphertext (c) the
probability of the expression α ·m + β · c + γ · k, where “·” denotes the scalar
product, differs from 1

2 [5]. Let S be a substitution with n-bit input and m-bit
output, and λ be the maximum value of an approximation table (excluding
the value of the cell [0,0]) [51]. Then

λ = max
α∈Fn

2 ,α 6=0,β∈Fm
2

∣∣∣∣∣#
{

x |
n−1⊕
s=0

(xs · αs) =
m−1⊕
t=0

(S[x]t · βt)− 2n−1

}∣∣∣∣∣ ,

where γj is jth bit of γ. Linear cryptanalysis is more efficient for the greater
value of λ [5].

1 .3 .3 . AL G E B R A I C

Algebraic cryptanalysis exploits algebraic features of cryptographic algo-
rithms. Whilst algebraic attacks on stream ciphers are well studied from both
a theoretical and practical point of view [51, 55–57], for others cryptoprimi-
tives the question remains open. In this connection, the following description
will be based on known results for block ciphers. The same approach can
be applied for other cryptographic primitives such as authenticated ciphers,
hash function, etc.

During an algebraic attack the encryption algorithm is often represented as
a system of equations. To obtain the key it is necessary to solve the system
with respect to all variables. It is believed that the system with a lower degree
is easier to solve [55]. To implement the attack, the following stages must be
performed

• decompose the encryption algorithm into basic components;

• describe each of the elements algebraically;

12

Introduction

• bind each of the output values to the input of other components.

Decomposition is a partition of the encryption algorithm into smaller pieces.
By a basic component in modern ciphers linear and nonlinear transformations
(layers) are understood [5]. An algebraic description is the conversion of the
main elements into a system of equations that holds for all input and output
values of the transformations. The output of these stages is the system of
equations describing the entire encryption (decryption) algorithm including
the key expansion routine.

To date there are many methods for solving systems of equations over F2
such as Gaussian elimination, XL, F4 and Gröbner basis [55, 57]. Moreover,
the complexity of most methods depends on the density of the system. This
allows one to conclude that the density of the system of equations describing
the substitution affects the complexity of the final system.

This method was fist applied to block ciphers by Courtois in the early
2000s [58]. His approach is based on the principle stated above, that is the
description of the substitution by the system of equations with the gradual
expansion for the entire encryption algorithm. Application of this approach
allows to describe AES with a system of equations of degree 2.

Later theoretical results of Courtois were implemented by Weinmann in
practice [59]. He attacked a scale-down version of the AES cipher (MiniAES),
and thus demonstrated the viability of the algebraic attack. Similar results
were obtained by Kleiman in [60]. Unlike Weinmann, she presented a general
algorithm based on a matrix approach for obtaining the system of equations
describing a given S-box. However, to break 4 rounds of the 16-bit version of
AES was not possible, even with enormous computing resources [60]. A few
years ago it was announced that a special case of the Gröbner basis algorithm
can break up to 10 rounds of scaled-down AES [61].

In 2006 Courtois demonstrated an attack on a full version of 6-round DES
[62]. Only one plaintext/ciphertext pair was necessary to find a key (20 bits
of which have been fixed) on a personal computer.

Application of the algebraic attack was also demonstrated for ciphers sub-
mitted to the Ukrainian competition [63, 64]. Many designers have used Ny-
berg’s method, i.e. calculation of the inverse element in the field F2n followed
by an affine transformation, to generate substitutions [65]. This approach
allows to achieve the best known indicators for protection against differential
and linear cryptanalysis. However like in AES, the entire cryptoprimitive
can be described by a system of equations of degree 2 [55, 63]. This is an

13

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

undesirable property that may cause future attacks. As a consequence, the
analysis showed that substitutions used in the ciphers Kalyna and Mukhomor
had a number of advantages over other ciphers [21].

There are other trends in the solution of the system of equations such
as conversion to the SAT problem [57]. Moreover, in Paper I an essentially
different approach to the description of the cryptographic primitive is shown
where the degree of the system does not affect the complexity.

1 .3 .4 . RE L AT E D -K E Y

A related-key attack is a kind of cryptanalysis where an adversary can observe
the input and output of a cipher under the influence of different keys. She
only knows mathematical relations of the keys whilst the exact values are
initially unknown [66].

During this attack it is assumed that the cryptanalyst has no direct access
to the searched key (e.g., the key is stored in a hardware encryption unit).
Nonetheless, the adversary can change in a certain way different pieces of the
key. Due to these limitations, the related-key cryptanalysis is more theoretical
than practical. Nevertheless, it allows one to find the key with the minimal
known complexity [67].

It should be noted that one of the main components of the biclique attack
on AES is a correlation of the round keys [68]. The biclique attack became
widespread after the successful implementation on that cipher. The authors
of [68] have theoretically proved that the encryption key can be found with a
complexity less than exhaustive search.

1 .3 .5 . CO M B I N AT I O N O F T H E M E T H O D S

Nowadays it is almost impossible to apply independent attacks against mod-
ern ciphers. This is due to the fact that the designers take into consideration
all known attacks when a new cipher is created. Differential and linear crypt-
analysis in the form which has been applied to DES is already ineffective
against present-day ciphers. Thereby, modified or combined attacks have
begun to develop rapidly.

Because of the simplicity of the description a lot of attacks based on the
differential properties have been developed during the last 20 years. These
include truncated differential, impossible differential, boomerang, higher
order differential and others attacks [5, 10].

14

Introduction

In 2011 the full version of the cipher GOST 28147 was firstly attacked by
sequential application of fixed points, meet-in-the-middle and brute force
attacks [17]. The same year the first attack on the full version of the cipher
AES was published [68]. This attack consists of a combination of related-key
and brute force attacks with the help of a complete bipartite graph.

Thus, the development and application of combined methods is a priority
area of research in cryptology.

1 .3 .6 . OT H E R D I R E C T I O N S

It is assumed that even weak ciphers can become cryptographically strong
when increasing the number of rounds. However, unlike the others, in slide
attacks an adversary analyzes the key expansion rather than looks for vul-
nerabilities in the encryption routines [69]. This type of attack was firstly
proposed by Wagner and Biryukov in [70]. It is mainly applied to iterative
ciphers, a part of which (usually the round function) is applied sequentially
by using only one key. The important thing in this attack is that the part must
be identical and invertible. Thus, the number of cycles of the algorithm in
this case does not affect the success of its breaking.

In recent years, the number of papers on cryptanalysis which do not con-
sider the internal structure of the cipher is constantly increasing. For example,
in [71, 72] it was shown that if an adversary has access to the session key
management then she could restore a long-term key of the cipher GOST 28147
in a few minutes. Another example in this direction is Isobe’s attack [73]. It
is based on the ratio of the round key lengths to the block size while the
round routine of the cipher is represented as a random function. More gen-
eral theoretical results consist in finding distinguishers for universal schemes
(Feistel, Lai-Massey, SPN and Sponge). The analysis shows advantages of one
construction over another under the condition of the random or permutation
round function. [74].

Side channel attacks should also be mentioned [75]. They use power or
time fluctuations, leakage through electromagnetic or sound media, and other
sources for obtaining information about the master key. Side channel attacks
relate to attacks on implementation. Even theoretically secure encryption
algorithms can be broken due to poor software or hardware implementation.
However, practical experiments show that in some cases it is possible to create
additional criteria to the basic components, thereby increasing the complexity
of certain side channel attacks [76].

15

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

2. B I N A RY N O N L I N E A R M A P P I N G S I N C RY P TO G R A P H Y

Analysis of the latest solutions used in constructions of advanced crypto-
graphic primitives allows to conclude that they largely inherited ideas of the
block cipher AES [10]. Unlike Rijndael, where the substitution was generated
based on Nyberg’s design, new ciphers have one or more randomly generated
S-boxes. Their main advantage is a description by a system of equations of
degree 3 [77].

Substitutions for modern symmetric primitives are usually implemented in
the form of lookup tables. Considering that lots of symmetric algorithms (e.g.,
Rijndael, PRESENT, ARIA, Keccak, etc.) use XOR as the key mixing routine,
S-boxes are the only elements defining nonlinearity of encryption transforma-
tion and the level of resistance against cryptanalytic attacks [5]. Moreover, the
number of encryption cycles is calculated based on cryptographic parameters
of a nonlinear mapping, given in advance.

Aspects of vectorial Boolean functions used in symmetric cryptography as
substitutions and their relevant cryptographic properties are presented in this
section.

2 .1 . DE F I N I T I O N S A N D N O TAT I O N S

Let n and m be two positive integers. Define by Fn
2 a vector space of all binary

vectors of length n, where F2 is the Galois field with elements {0, 1}. Then an
(n, m)-function is a vectorial Boolean function F : Fn

2 7→ Fm
2 . Boolean functions

f1, f2, . . . , fm, such that F(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),
and their linear combinations are called coordinate and component func-
tions of F, respectively. If m = 1 then a vectorial Boolean function has a single
output bit and is called a Boolean function. To find algebraic properties of
(n, m)-functions, a vector space is often induced by a structure of the finite
field F2n .

For any positive integers n and m, a function F from Fn
2 to Fm

2 is called
differentially δ-uniform if for every a ∈ Fn

2 \ {0} and every b ∈ Fm
2 the

equation F(x) + F(x + a) = b admits at most δ solutions [65, 78]. Vectorial
Boolean functions used as S-boxes in cryptographic primitives must have low
differential uniformity to provide high resistance to differential cryptanalysis
(see Subsection 1.3.1). For the special case n = m differentially 2-uniform
functions are called almost perfect nonlinear (APN). Since δ ≥ 2, they are
optimal regarding this criterion. The notion of APN function is closely related

16

Introduction

to the notion of almost bent (AB) function [79]. The last one can be described
in terms of the Walsh transform for a function F : Fn

2 7→ Fm
2

λ(u, v) = ∑
x∈Fn

2

(−1)v·F(x)+u·x,

where u ∈ Fn
2 , v ∈ Fm

2 and “·” denotes scalar products in Fn
2 and Fm

2 , respec-
tively.

The set {λ(u, v) | (u, v) ∈ Fn
2 × Fm

2 , v 6= 0} is called the Walsh spectrum
of F. If n = m and the Walsh spectrum of F consists of {0,±2

n+1
2 } then the

function F is called AB [79]. AB functions exist for n odd only and oppose
an optimal resistance to linear cryptanalysis (see Subsection 1.3.2). Every AB
function is APN but the converse is not true in general (see [51, 80] for a
comprehensive survey on APN and AB functions).

The natural way of representing F : Fn
2 7→ Fm

2 is algebraic normal form
(ANF)

F(x1, x2, . . . , xn) = ∑
I∈P({1,...,n})

aI

(
∏
i∈I

xi

)
, aI ∈ Fm

2 ,

where P(z) denotes the power set of z. The algebraic degree deg(F) of F is the
degree of its ANF. F is called affine if deg(F) is at most 1. An affine vectorial
Boolean function with F(0, . . . 0) = 0 is linear.

2 .2 . CRY P TO G R A P H I C P R O P E RT I E S O F V E C TO R I A L BO O L E A N

F U N C T I O N S

While Boolean functions are adopted mainly as filtering functions in stream
ciphers, vectorial Boolean function are used in block and authenticated ciphers,
and hash functions as substitutions. For theoretical analysis the univariate
representation is one of the best ways to consider cryptographic properties
of the binary mappings. However, field operations are not so well optimized
as operations with Boolean functions in modern computers, especially for
large n. Therefore, it makes sense to represent cryptographic properties of
(n, m)-functions using the set of component functions. All definitions and
indicators are well-known and one can see [51, 80] for more details.

First of all, let’s consider the properties of Boolean functions. A Boolean

function of n variables is called balanced if
2n−1

∑
x=0

f (x) = 2n−1, where x =

17

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

(x1, x2, . . . , xn). The correlation between an arbitrary Boolean function f (x)
and the set of all linear functions is determined by Walsh transformation

W(w) =
2n−1

∑
x=0

(−1) f (x)⊕lw(x),

where lw(x) = w · x = w1x1 ⊕ w2x2 ⊕ . . . wnxn. The nonlinearity is related to
the Walsh values as

NL(f) =
1
2

(
2n − max

w∈Fn
2 \{0}

|W(w)|
)

.

Autocorrelation of f noted as r f (α) shows how the function differs from
itself shifted on several positions, i.e.

r f (α) =
2n−1

∑
x=0

(−1) f (x)⊕ f (x⊕α),

where α ∈ Fn
2 . For cryptography the maximal value of the function r f (α) is

of interest, and can be found as

ACmax(f) = max
α∈Fn

2 \{0}

∣∣∣r f (α)
∣∣∣ .

Let σ be the sum-of-squares indicator, then

σ =
2n−1

∑
α=0

r2
f (α).

Let hw(α) be a binary Hamming weight of α ∈ Fn
2 [51]. Then it is said that

f (x) satisfies propagation criterion of order k (PC(k)) if and only if for all
nonzero vectors α ∈ Fn

2 such that 1 ≤ hw(α) ≤ k the following is true

2n−1

∑
x=0

f (x)⊕ f (x⊕ α) = 2n−1.

The strict avalanche criterion (SAC) corresponds to PC(1).
A Boolean function is correlation immune of order m (CI(m)) if the equation

W(w) = 0 holds for all w ∈ Fn
2 , where 1 ≤ hw(w) ≤ m. If the function is

18

Introduction

balanced and satisfies CI(m) simultaneously, then such a function is called
m-resilient.

The minimum algebraic degree of g(x) 6= 0 of the set {g | f (x) · g(x) = 0}
∪ {g | (f (x)⊕ 1) · g(x) = 0} is called algebraic immunity (AI) of a Boolean
function f .

Using the above definitions let’s describe cryptographic properties of substi-
tutions. Suppose S is the table representation of a vectorial Boolean function
F = (f1, . . . , fm) from Fn

2 to Fm
2 . Define {hj = j · F | 0 < j < 2m} as the set of

the component functions of F. Then

• nonlinearity of S is

NL(S) = min
0<j<2m

(
NL(hj)

)
;

• minimum degree of S is

deg(S) = min
0<j<2m

(
deg(hj)

)
;

• the maximum value of autocorrelation spectrum of S is

ACmax(S) = max
0<j<2m

(
ACmax(hj)

)
;

• S satisfies strict avalanche criterion if every hj satisfies SAC;

• S satisfies propagation criterion of order k if every hj satisfies PC(k);

• S is correlation immune of order k if every hj is CI(k);

• S is balanced (permutation) if every hj is balanced;

• S is k-resilient if every hj is k-resilient.

Similar properties for vectorial Boolean functions are given in [51].
While the maximum value of the approximation table (λ) can be calculated

directly from the nonlinearity of the S-box as λ = 2n−1−NL(S), the maximum
value of the differential table cannot be directly evaluated from the component
functions. For the given S-box the indicator δ-uniformity defined in 1.3.1
and 2.1 is equivalent to the maximum value of MDT.

The ways to represent a substitution as a system of equations over F2 are
given in [60, 63]. Define density as the fraction of nonzero elements in a
system of equations. Then, a substitution provides better protection against
algebraic attacks (see 1.3.3) if the system

19

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

• has higher degree;

• has fewer equations;

• is more dense.

Unambiguous theoretical relations between these parameters is an unsolved
problem [81]. Suppose the degree of a system of equations is the maximal
algebraic degree of all polynomials this system consists of. Then algebraic
immunity of the S-box (AI(S)) means the smallest degree of the system
describing this substitution.

2 .3 . EQ U I VA L E N C E O F V E C TO R I A L BO O L E A N F U N C T I O N S

Two functions F, G : Fn
2 7→ Fm

2 are called extended affine equivalent if there
exist such affine permutations A1 = L1(x) + c1, A2 = L2(x) + c2 and an
arbitrary linear function L3(x) such that

F(x) = A1 ◦ G ◦ A2(x) + L3(x).

If L3(x) = const, or L3(x) = 0, c1 = 0, and c2 = 0 then F and G are affine, or
linear equivalent, respectively. Moreover, for at least one missing element of
L1(x), L2(x), L3(x), c1, c2 the functions are called restricted EA (REA) equiva-
lent [82].

Any affine function A : Fn
2 7→ Fm

2 can be represented in matrix form

A(x) = K · x⊕ C,

where K is an m× n matrix and C ∈ Fm
2 . All operations are performed in F2,

thus the above equation can be rewritten as
a0
a1
. . .

am−1


x

=


k0,0 · · · k0,n−1
k1,0 · · · k1,n−1

...
. . .

...
km−1,0 · · · km−1,n−1

 ·


x0
x1
. . .

xn−1

⊕


c0
c1
. . .

cm−1


where ai, ci, xs, k j,s ∈ F2. This representation allows to describe EA-equivalence
in matrix form

F(x) = M1 · G(M2 · x⊕V2)⊕M3 · x⊕V1

20

Introduction

where elements of {M1, M2, M3, V1, V2} have dimensions {m×m, n× n, m×
n, m, n}.

In [83] F and G are considered as GF(x, y) = {{x, y} | y = F(x)}. They are
Carlet-Charpin-Zinoviev (CCZ) equivalent, if for F2(x) = L3(x) + L4 ◦ G(x)
and permutation F1(x) = L1(x) + L2 ◦ G(x) the following equation holds

F(x) = F2 ◦ F−1
1 (x),

where L1(x), L2(x), L3(x), L4(x) are arbitrary affine functions.
CCZ-equivalence is the most general known equivalence of functions for

which differential uniformity and extended Walsh spectrum are invariants.
In particular every function CCZ-equivalent to an APN (respectively, AB)
function is also APN (respectively, AB). EA-equivalence is a special case of
CCZ-equivalence [51]. The algebraic degree of a vectorial Boolean function
is invariant under EA-equivalence but, in general, it is not preserved by
CCZ-equivalence.

3. SU M M A RY O F PA P E R S

This thesis is based on seven papers. A synopsis of each paper is given in the
following subsections.

3 .1 . PA P E R I

Several approaches which use binary decision diagrams for algebraic attacks
are well-known in open literature. The efficiency of BDD-based attacks is
demonstrated both for general models and for particular cases such as A5/1,
E0 and Trivium [84, 85]. In this paper we extend the previous results on
block ciphers and present new specific strategies and approaches for solving
compressed right hand side (CRHS) systems [86].

Most ciphers use only one nonlinear element, which is usually represented
as a lookup table. Hence, we are interested in finding a BDD that represents
a given S-box mapping Fn

2 to Fm
2 . Let the input and output bits of the S-box

be x0, . . . , xn−1 and y0, . . . , ym−1, respectively. Denote the levels of a binary
tree as {x0, . . . , xn−1, y0, . . . , ym−1}. For each value of substitution create a
path from the source node on top to the sink node (true node) at the bottom,
and all edges direct downwards. If the edges are divided into 0-edges and
1-edges, then we can uniquely represent an arbitrary S-box using a BDD upto
the order of variables.

21

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Since each level is represented in general as a linear combination of input
and output bits, then a linear layer of a cryptographic primitive does not
add extra variables and as a consequence does not affect the complexity of
the operations performed on the tree [86]. This representation allows to join
several BDDs using adjacent variables on different levels. Thereby, the entire
encryption algorithm can be described as one big BDD or as the set of smaller
BDDs.

Several operations such as swapping and adding levels, and absorbing
linear dependencies are also defined on this special version of BDD. While
joining together many BDDs and absorbing all linear dependencies, the solv-
ing complexity depends heavily on the order the BDDs are joined. Finding
the ordering of BDDs that gives the minimum complexity is probably a hard
problem. During our experiments we have not found a strategy for ordering
that is universally best. However, we described automatic ordering, divide-
and-conquer and order by cryptanalysis strategies for how to join and absorb,
with the aim to keep the complexity down.

We apply the proposed attack on DES with a reduced number of rounds,
MiniAES and the EA-equivalence problem. Our experiments have shown that
6-round DES can be broken in approximately one minute on an ordinary
computer. This is a factor 220 improvement over the best earlier algebraic
attack on DES using MiniSAT [62].

There have been several earlier attempts to break MiniAES [60, 61, 87].
Approaches that exploit the short key in MiniAES (only 16 bits) succeed very
quickly, but the general methods of F4 and XL/XSL failed to solve systems
representing more than one round of MiniAES. The approach we use in the
paper does not exploit the short key, while still solving systems representing
10 rounds of MiniAES using approximately 45 minutes and 8GB of memory.
In addition, the BDD method has shown the advantages compared to a
Gröbner basis and CryptoMiniSat for solving the EA-equivalence problem.

Despite the excellent practical results, a number of unresolved issues still
remain. The main one concerns the theoretical estimates of the complexity of
the BDD attack.

3 .2 . PA P E R I I

For most new algorithms evaluation of the resistance to known attacks, such
as differential, linear or algebraic, is provided by the designers. However, an
independent verification of the results is always needed [88]. To conduct such

22

Introduction

3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

Dimension of substitutions

Ti
m

e
in

se
co

nd
s

MDT
MLT

Minumum degree
Algebraic immunity

Fig. 4: The relationship between the dimension of random substitutions and time of calculation

research, tools for analysis of both basic components and entire encryption
algorithms are required. On the other hand, universal approaches would
also be a useful supplement for the designers of prospective algorithms.
Choosing linear layers is a relatively simple task when only few indicators
are considered [89]. The situation is completely opposite for nonlinear layers
which usually consist of parallel application of substitutions.

As was mentioned in Section 2 vectorial Boolean functions have lots of
cryptographic properties. While for a given S-box some properties are cal-
culated directly from the formula, others require special knowledge (i.e. for
algebraic immunity). Today there are a number of tools that can be consid-
ered a partial solution to the problem [57, 90–93]. However, the cryptographic
community needs a universal approach to calculate indicators for arbitrary
binary mappings. In this paper a tool for generating and analyzing arbitrary
vectorial Boolean functions F : Fn

2 7→ Fm
2 was given.

The proposed library (package) S-box includes methods for calculation of
all indicators described in Section 2. In particular one can find δ-uniformity,
nonlinearity or maximum of the linear approximation table, minimum degree,
algebraic immunity, maximum value of autocorrelation spectrum, correlation
immunity and other cryptographic properties for arbitrary vectorial Boolean
functions. In addition to this, there are implemented several methods for

23

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 1: Comparison of 8-bit S-boxes

Properties AES
GOST R

34.11-2012

STB

34.101.31-2011

Kalyna’s
S0 [21]

Proposed
in [77]

MDT 4 8 8 8 8
NL 112 100 102 96 104

Absolute indicator 32 96 80 88 80
SSI 133120 258688 232960 244480 194944

Minimum degree 7 7 6 7 7
Algebraic immunity 2 3 3 3 3

generating substitutions with predefined properties based on Gold, Kasami,
Welch, inverse and other well-known functions. The library also contains a
number of auxiliary functions such as finding the univariate polynomial or the
system of equations describing the substitution; checking the APN property,
or CCZ- equivalence; generating look up tables based on the user-defined
univariate polynomials and many others.

The performance and arbitrary dimension of binary nonlinear mappings
were the main criteria for the S-box library. Calculation of some indicators
are based on known results [94, 95], while others (i.e. cyclic properties or
algebraic immunity) were optimized during the research and experiments.
Fig. 4 shows the time complexity of several frequently used methods for
n = m.

From a practical point of view, Sbox can be used to analyze nonlinear com-
ponents of the existing or prospective cryptographic primitives. An example
of the substitution comparison is given in Table 1.

In conclusion, the library includes lots of functions for computing the
properties of permutations and methods of generation. Despite this, there are
many directions for improvement and development. The library is designed to
facilitate extension of its functionality quite easily, for instance by combining
to optimize methods for calculation of indicators such as minimum degree or
autocorrelation, or by realizing a native integration with Sage and creation of
a universal test environment.

24

Introduction

3.3 . PA P E R I I I

Since substitutions are one of the main components that determine the secu-
rity of modern cryptographic algorithms, many cryptographic criteria must
be considered for a new cryptographic primitive. Taking into account the
large number of existing indicators, their controversy and partial interdepen-
dence, it is most likely impossible to generate a substitution that satisfies all
known requirements. This became a reason to use a substitution satisfying
only mandatory criteria essential for a particular symmetric algorithm. Such
substitutions are called optimal [10, 51, 80]. Optimality criteria may vary
depending on which cipher is considered.

After investigation of existing and prospective attacks the following criteria
were highlighted as significant

• maximum value of minimum degree;

• maximum algebraic immunity with the minimum number of equations;

• absence of fixed points (cycles of length 1);

• substitution must be bijective (permutation);

• minimum value of δ-uniformity and maximum value of nonlinearity
limited by parameters listed above.

In particular, for n = 8 an optimal permutation has algebraic degree 7,
algebraic immunity 3 and 441 equations, δ-uniformity under 8, nonlinearity
over 100 and without fixed points.

The majority of theoretical methods for generation of vectorial Boolean
functions have extreme characteristics of δ-uniformity and nonlinearity, but
at the same time do not possess other properties (i.e., high value of algebraic
immunity) which are necessary for next-generation symmetric cryptographic
primitives.

The first and most obvious solution is to generate random permutations
and check them on optimality. After 12 hours of cluster operation (4096 cores)
there were found 27 optimal permutations with NL = 100. Four of them were
CCZ-inequivalent. After 48 hours (22 years on 1 core) the program run on
the same cluster didn’t find any substitution with NL ≥ 102.

A counterexample was found in STB 34.101.31-2011 [20]. The optimal sub-
stitution has NL = 102. Thus we found another way to generate substitutions
with NL ≥ 100. Instead of trying to find a random permutation or apply the

25

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

88 90 92 94 96 98 100 102 104
−10

−5

0

5

10

15

Nonlinearity

M
in

ut
es

fo
r

1
S-

bo
x,

lo
g 2 Proposed

Random
Tesař

1 min

1 s

Fig. 5: Performance comparison of the substitution generation methods

hill climbing technique, it was decided to solve the problem from the other
side. We started with the best known permutation and modified it (swapped
values) until the expected result was achieved. As was proven in [96] one
swap does not much influence nonlinearity and δ-uniformity.

Before presenting our result at the conference we found another algorithm
which produces the same result [97]. The performance comparison (Fig. 5)
shows that our proposed method is 10 times faster then Tesař’s [97].

After 107 hours of cluster operations, that are equivalent to 50 years on
a single-processor computer, there were not found better substitutions. The
practical results of both methods show that there are no optimal substitutions
with nonlinearity greater than 104. However, there are permutations with
nonlinearity 106 and algebraic immunity 2, in which the number of equations
is small (e.g. 1). Hereby, the question about existence of optimal substitutions
with nonlinearity more than 104 remains open.

Four substitutions used in the new Ukrainian block cipher and hash func-
tion were generated by the proposed method. An additional criterion which
the substitutions must satisfy is belonging to different CCZ-equivalent classes.
Details stated in Paper V.

26

Introduction

3.4 . PA P E R IV

In 2010 at the RusCrypto’10 conference a prototype of the prospective hash
function also known as Stribog (Steebog) [27, 98] was presented. Two years
latter this hash function was accepted as the governmental standard GOST
R 34.11-2012 [29]. The description of the hash function available in public
literature was only algorithmic. To prove some cryptographic properties it is
necessary to have a common mathematical representation as has been made
in this paper.

The core of the hashing algorithm is the L ◦ P ◦ S transformation. Trans-
formation of the state into an 8× 8 byte matrix gave a general idea of each
transformation. Further investigations showed that S and P transformations
have analogues in AES. While S is identical to the SubBytes routine, P is
similar to ShiftRows. Unlike ShiftRows, P transposes the state instead of
shifting it by a constant number positions. The most difficult task was to
identify the L transformation, which is a multiplication by a 64× 64 binary
matrix.

In summary, the main issue was to find the irreducible polynomial which
gives the representations of transformations over F28 that produce the same
outputs. Based on the assumption that the matrix used in L possesses the
MDS property, the polynomial f (x) = x8 + x6 + x5 + x4 + 1 was found. Using
this polynomial all basic components of the hash function were described in
AES-like form.

This representation allows to use the wide trail strategy to prove the
resistance of the hash function to differential and linear cryptanalysis. At the
same time, the existing attacks can be easily adapted to GOST R 34.11-2012
[99]. Additionally, this gives access to well-known optimization techniques for
increasing performance on a variety of platforms [10]. Using a table approach
a fast cross-platform implementation of Stribog was proposed [100, 101].

3 .5 . PA P E R V

As stated before, the choosing of essential properties for new substitutions
is not a trivial task. In this paper an analysis of the absence of fixed points
criterion is given. If one considers the round function instead of a single
substitution, then even for the AES S-box fixed points can be achieved.

The investigation is based on the fact that a cipher has lots of isomor-
phic (equivalent) representations. For AES the ShiftRows, MixColumns and

27

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

AddRoundKey routines are linear transformations with respect to XOR. Ma-
nipulations with these transformations give different representations [55]. It
is shown that at least one fixed point can be found for the AES substitution
in case of using XOR operation in AddRoundKey.

Applying the same model the advantages of additional modulo 2n were
shown. A mixing key routine based on the modulo operation adds more
nonlinearity and as a result reduces the number of possibilities for adversaries.
The analysis shows the necessity of additional requirements for multiple
substitutions used in one cryptographic primitive.

Proposition 1. Substitutions S1, S2, . . ., Sl used in a nonlinear layer must belong
to different classes of equivalence.

Since CCZ-equivalence is the most general case of known equivalences,
it makes sense to check whether substitutions belong to different CCZ-
equivalence classes.

The more practical result was achieved independently for Zorro [102]. The
core of that attack has the same principles that were described in this paper.

3 .6 . PA P E R VI

The behavior of nonlinear feedback shift registers is poorly understood, which,
in turn, results in a lack of criteria for selecting parameters that directly affect
security. To achieve this, designers of stream ciphers often combine linear and
nonlinear registers. MICKEY is an example of such ciphers.

In several papers the theoretical weaknesses of MICKEY were presented
[103–106]. It was shown in particular that choosing constants in the wrong
way may lead to security problems. The shared idea of all these attacks
is the construction of a backward states tree. After collecting the results
from all previous papers it became possible to evaluate theoretically the
probabilities of all possible branches in the tree. We proved both theoretically
and practically that in key/IV load mode the expectation value of degree
approximately equals 2. The analogous value for preclock and key-generation
mode is approximately equal to 1. Thus, knowing the internal state of registers
it is always possible to perform reverse steps to acquire the state after key
initialization function. However, the inverse key/IV load modes produce a
complete binary tree.

The other parts of the paper describe some practical observations. First, it
is noted that each reverse step increases the probability of subtree cutting off

28

Introduction

Table 2: Complexities for Solving REA-equivalence Problem

Restricted EA-equivalence Complexity G(x)
1 F(x) = M1 · G(M2 · x) O

(
n2 · 2n) P

2 F(x) = M1 · G(M2 · x⊕V2)⊕V1 O
(
n · 22n) P

3 F(x) = M1 · G(x⊕V2)⊕V1 O
(
22n+1) †

4 F(x) = M1 · G(x⊕V2)⊕V1 O
(
n · 23n) A

5 F(x) = G(M2 · x⊕V2)⊕V1 O (n · 2n) P
6 F(x) = G(x⊕V2)⊕M3 · x⊕V1 O (n · 2n) A

7 F(x) = M1 · G(x⊕V2)⊕M3 · x⊕V1 O
(
22n+1) ‡

8 F(x) = M1 · G(x⊕V2)⊕M3 · x⊕V1 O
(
n · 23n) A

P - permutation; A - arbitrary;
† - G is under condition {2i | 0 ≤ i ≤ m − 1} ⊂ img(G′) where G′(x) =
G(x) + G(0);
‡ - G is under condition {2i | 0 ≤ i ≤ m − 1} ⊂ img(G′) where G′(x) =
G(x)⊕ LG(x)⊕ G(0).

with all previous states. This property exists since there is a high probability
of orphan states. Therefore, in some cases key bits could be found uniquely.
Second, since the functions used for different modes are the same, it allows
to generate key-streams shifted by a fixed number of bits for different pairs
of key and IV. However, the conditions imposed on the use of keys and IVs
stated in the MICKEY’s specification do not give the opportunity to apply
the attack in the real world. In the end, the meet-in-the-middle attack based
on the backward states tree is proposed.

Taking into consideration everything mentioned above, the proposed method
for analysis of MICKEY-like ciphers allows to justify the choice of the encryp-
tion algorithm parameters based on the estimation of branch points degree
probabilities.

3 .7 . PA P E R VII

In [91] Alex Biryukov et al. have shown that in the case when given functions
are permutations of Fn

2 , the complexity of determining their linear and affine
equivalence equals O

(
n2 · 2n) and O

(
n · 22n), respectively. In Paper VII we

29

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 3: Practical Comparison of Solving REA-equivalence Problem

#
n=6 n=8 n=10 n=12 n=14

ES KM ES KM ES KM ES KM ES KM

1 69 12 125 14 197 17 285 20 389 22
2 81 15 141 19 217 24 309 28 417 32

3 13 17 21 25 29
4

47
21

79
27

199
34

167
40

223
46

5 47 12 79 14 199 17 167 20 223 22
6 48 9 80 11 120 14 168 16 224 18

7 13 17 21 25 29
8

83
21

143
27

219
34

311
40

419
46

consider the conditions under which the complexities of checking vectorial
Boolean functions F, G : Fn

2 7→ Fm
2 on REA-equivalence can be reduced.

Matrix form is used for EA-equivalence representation in both presented
and [91] methods. This approach allows to prove a number of propositions.
Most of them are summarized in Table 2. The first two rows present the
complexities from [91].

Proposition 2. Any linear function L : Fn
2 7→ Fm

2 can be converted to a matrix
with complexity O(n).

Since the considered functions have different REA-equivalent representa-
tions, the complexities can not be directly compared to each other. Therefore,
Table 3 presents the comparison of known methods (KM) with exhaustive
search (ES) based on the calculated complexities (in binary logarithm form)
for most interesting values of n.

It is easy to see that for some of the above cases the complexity takes poly-
nomial time. Obtained results give a practical method for checking arbitrary
vectorial Boolean functions on REA-equivalence.

4. CO N C L U S I O N S

The research conducted solved a number of current important scientific tasks
related to improving methods of cryptanalysis and developing of new require-
ments for advanced symmetric cryptoalgorithms. In particular, backwards

30

Introduction

states cryptanalysis of the stream cipher MICKEY, and BDD-based algebraic
attacks on DES and MiniAES show that even well-studied ciphers may have
weaknesses. Consideration of these attacks at the design stage of new primi-
tives enables to create better and more secure cryptographic algorithms.

In the post-AES era many cryptoprimitives providing high-level security
have random substitutions. The main filtering criteria are balancedness,
absence of fixed points, δ-uniformity, minimum degree, algebraic immunity
and nonlinearity. At the same time, promising algebraic cryptanalysis is not
yet fully understood, and the boundaries of its application are not clear.

A new heuristic method for generating S-boxes has been proposed based
on the gradient descent method for generation of Boolean functions. It allows
to generate substitutions with the best properties known to date at low
cost resources. In particular, for n = 8 case the application of the method
gives permutations with absence of fixed points, and indicators δ-uniformity
8, nonlinearity 104, minimum degree 7 and algebraic immunity 3. These
substitutions surpass analogues used in standards STB 34.101.31-2011, GOST
R 34.11-2012 and in the draft standard of the new Russian block cipher.

Advanced design approaches of symmetric cryptographic algorithms in-
troduce additional requirements for S-boxes. One such requirement is that
all permutations used in a nonlinear layer belong to different equivalence
classes. Satisfying this reduces the number of weak isomorphic representa-
tions of an encryption algorithm. As a consequence, it becomes necessary
to find equivalent transformations that can be used to construct isomorphic
representations.

Several new methods for checking the equivalence of two binary nonlinear
mappings have been proposed. These methods are based on the conversion
of a linear function defined over a field F2n to the matrix form. Under certain
conditions the complexity can be reduced to polynomial. The approaches
used in proving of the proposed methods can be additionally applied to find
original high-level representations of cryptographic primitives such as GOST
R 34.11-2012.

The main practical result is the designed software for effective generation
and calculation of indicators of arbitrary nonlinear binary mappings. This
allows one to create and analyze arbitrary nonlinear components used in
symmetric cryptographic primitives. Besides this, a patch for OpenSSL based
on a cross-platform implementation of GOST R 34.11-2012 noted in Paper IV
was created by Dmitry Olshansky [107]. Most of these results have also been

31

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

used in one of the Ukraine’s leading companies that provides services in the
field of information security.

32

Introduction

RE F E R E N C E S

[1] Shimeall, T., Spring, J.: Introduction to information security: A strategic-
based approach. Syngress Publishing, 2013.

[2] Schneier, B.: Applied cryptography: Protocols, algorithms, and source code
in C. Wiley, 1996.

[3] Gorbenko, I., Gorbenko, Y.: Applied cryptology: Theory. Practice. Ap-
plication. LLC Publishing "Fort", 2013. (In Ukrainian).

[4] Van Tilborg, H. C., Jajodia, S.: Encyclopedia of cryptography and
security. Springer, 2011.

[5] Knudsen, L. R., Robshaw, M.: The block cipher companion. Information
Security and Cryptography. Springer Berlin Heidelberg, 2011.

[6] Menezes, A. J., Van Oorschot, P. C., Vanstone, S. A.: Handbook
of applied cryptography. CRC Press, 2010.

[7] Preneel, B., Biryukov, A., Cannière, C. D., et al.: NESSIE: Final
report of European project number IST-1999-12324, named New Euro-
pean Schemes for Signatures, Integrity, and Encryption. Electronic source,
2004. https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf.

[8] FIPS 46–3: Data Encryption Standard (DES). National Institute of Stan-
dards and Technology, 1993.

[9] Loukides, M., Gilmore, J.: Cracking DES: Secrets of encryption research,
wiretap politics and chip design. O’Reilly Media, 1998.

[10] Daemen, J., Rijmen, V.: The design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer,
2002.

[11] FIPS PUB 197: Advanced Encryption Standard (AES). National Institute
of Standards and Technology, 2001.

[12] Robshaw, M. J. B., Billet, O. (eds.): New stream cipher designs -
The eSTREAM finalists, vol. 4986 of Lecture Notes in Computer Science.
Springer, 2008.

[13] Cid, C., Robshaw, M., et al.: The eSTREAM portfolio in 2012. Elec-
tronic source, 2012. http://www.cspforum.eu/D.SYM.10-v1.pdf.

33

https://www.cosic.esat.kuleuven.be/nessie/Bookv015.pdf
http://www.cspforum.eu/D.SYM.10-v1.pdf

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

[14] CRYPTREC: Report of the cryptographic technique monitoring sub-
committee. Electronic source, 2003. http://www.cryptrec.go.jp/

report/c03_wat_final.pdf.

[15] CRYPTREC: Specifications of e-Government recommended ciphers.
Electronic source, 2013. http://www.cryptrec.go.jp/english/method.

html.

[16] Charnes, C., O’Connor, L., Pieprzyk, J., Safavi-Naini, R.,
Zheng, Y.: Comments on Soviet encryption algorithm. In De Santis,
A. (ed.), Advances in Cryptology — EUROCRYPT’94, vol. 950 of Lecture
Notes in Computer Science, pp. 433–438. Springer Berlin Heidelberg, 1995.

[17] Isobe, T.: A single-key attack on the full GOST block cipher. In Joux,
A. (ed.), Fast Software Encryption, vol. 6733 of Lecture Notes in Computer
Science, pp. 290–305. Springer Berlin Heidelberg, 2011.

[18] Dinur, I., Dunkelman, O., Shamir, A.: Improved attacks on full
GOST. In Canteaut, A. (ed.), Fast Software Encryption, vol. 7549 of
Lecture Notes in Computer Science, pp. 9–28. Springer Berlin Heidelberg,
2012.

[19] Aleksev, E., Smyshlyaev, S.: GOST 28147-89: "Do not rush to
bury him." Part 1. Security of the algorithm. Electronic source,
2013. http://www.cryptopro.ru/blog/2013/08/27/gost-28147-89-ne-
speshi-ego-khoronit-chast-1-stoikost-algoritma. (In Russian).

[20] STB 34.101.31-2011: Information technology and security. Information
security. Cryptographic encryption algorithms and control of integrity.
p. 35, 2011.

[21] Oliynykov, R., Gorbenko, I., Dolgov, V., Ruzhentsev, V.: Re-
sults of Ukrainian national public cryptographic competition. In Tatra
Mountains Mathematical Publications, vol. 47, pp. 99–113. Mathematical
Institute of Slovak Academy of Sciences, 2010.

[22] Oliynykov, R.: Next generation of block ciphers providing high-level
security. Winter School in Information Security, Finse, 2014. https://www.
frisc.no/wp-content/uploads/2014/05/finse2014-oliynykov.pdf.

[23] Kayser, R. F.: Announcing request for candidate algorithm nomina-
tions for a new cryptographic hash algorithm (SHA-3) family. In Federal

34

http://www.cryptrec.go.jp/report/c03_wat_final.pdf
http://www.cryptrec.go.jp/report/c03_wat_final.pdf
http://www.cryptrec.go.jp/english/method.html
http://www.cryptrec.go.jp/english/method.html
https://www.frisc.no/wp-content/uploads/2014/05/finse2014-oliynykov.pdf
https://www.frisc.no/wp-content/uploads/2014/05/finse2014-oliynykov.pdf

Introduction

Register, vol. 72, pp. 62 212–62 220. National Institute of Standards and
Technology, 2007.

[24] Chang, S.-j., Perlner, R., Burr, W. E., et al.: Third-round report
of the SHA-3 cryptographic hash algorithm competition. National
Institute of Standards and Technology, 2012.

[25] FIPS PUB 202 (draft): SHA-3 standard: Permutation-based hash
and extendable-output functions. National Institute of Standards and
Technology, May 2014.

[26] Grebnev, S., Dmukh, A., Dygin, D., Matyukhin, D., Rudskoy, V.,
Shishkin, V.: Asymmetric reply to SHA-3: Russian hash function draft
standard. In Pre-proceedings of Workshop on Current Trends in Cryptology
(CTCrypt 2012), 2012.

[27] GOST R 34.11-20__ (draft) revision 1: Information technology.
Cryptographic data security. Hash function. Electronic source, 2010.
http://infotecs.ru/laws/gost/proj/gost3411.pdf. (In Russian).

[28] Kazymyrov, O., Kazymyrova, V.: Algebraic aspects of the Russian
hash standard GOST R 34.11-2012. In Pre-proceedings of 2nd Workshop on
Current Trends in Cryptology (CTCrypt 2013), pp. 160–176, 2013.

[29] GOST R 34.11-2012: Information technology. Cryptographic data secu-
rity. Hash-function. Federal Agency on Technical Regulation and Metrology,
p. 34, 2013.

[30] Shishkin, V., Dygin, D., Lavrikov, I., Marshalko, G., Rudskoy,
V., Trifonov, D.: Low-weight and hi-end: draft russian encryption
standard. In Pre-proceedings of 3rd Workshop on Current Trends in Cryptol-
ogy (CTCrypt 2014), 2014.

[31] Gauravaram, P., Knudsen, L. R., Matusiewicz, K., Mendel, F.,
Rechberger, C., Schläffer, M., Thomsen, S. S.: Grøstl – a SHA-3
candidate. Submission to NIST (Round 3), 2011. http://www.groestl.

info/Groestl.pdf.

[32] CAESAR: Call for submissions, final (2014.01.27). Electronic source, 2014.
http://competitions.cr.yp.to/caesar-call.html.

[33] Poschmann, A. Y.: Lightweight cryptography: Cryptographic engineering
for a pervasive world. Ph.D. thesis, Ruhr University Bochum, Germany,

35

http://infotecs.ru/laws/gost/proj/gost3411.pdf
http://www.groestl.info/Groestl.pdf
http://www.groestl.info/Groestl.pdf
http://competitions.cr.yp.to/caesar-call.html

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

2009.

[34] Bellare, M., Namprempre, C.: Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In
Okamoto, T. (ed.), Advances in Cryptology — ASIACRYPT 2000, vol.
1976 of Lecture Notes in Computer Science, pp. 531–545. Springer Berlin
Heidelberg, 2000.

[35] Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.:
UMAC: Fast and secure message authentication. In Wiener, M. (ed.),
Advances in Cryptology — CRYPTO’ 99, vol. 1666 of Lecture Notes in
Computer Science, pp. 216–233. Springer Berlin Heidelberg, 1999.

[36] ISO/IEC 9797-1: Information technology – Security techniques – Mes-
sage authentication codes (MACs) – Part 1: Mechanisms using a block
cipher. ISO/IEC JTC 1/SC 27, p. 40, 1999.

[37] Rogaway, P.: Nonce-based symmetric encryption. In Roy, B., Meier,
W. (eds.), Fast Software Encryption, vol. 3017 of Lecture Notes in Computer
Science, pp. 348–358. Springer Berlin Heidelberg, 2004.

[38] Rogaway, P.: Authenticated-encryption with associated-data. In Pro-
ceedings of the 9th ACM Conference on Computer and Communications
Security, CCS ’02, pp. 98–107. ACM, New York, NY, USA, 2002.

[39] Namprempre, C., Rogaway, P., Shrimpton, T.: AE5 security no-
tions: Definitions implicit in the CAESAR call. Cryptology ePrint Archive,
Report 2013/242, 2013. http://eprint.iacr.org/.

[40] Selmer, E. S.: Linear recurrence relations over finite fields. University of
Bergen, 1966.

[41] Rueppel, R. A.: Analysis and Design of Stream Ciphers. Communications
and Control Engineering Series. Springer Berlin Heidelberg, 1986.

[42] Shannon, C. E.: A mathematical theory of communication. In Bell
system technical journal, vol. 27, pp. 623–656. University of Illinois Press,
1948.

[43] Barker, E., Kelsey, J.: Recommendation for random number genera-
tion using deterministic random bit generators. NIST Special Publication
800-90A, 2012.

36

http://eprint.iacr.org/

Introduction

[44] Merkle, R.: One way hash functions and DES. In Brassard, G. (ed.),
Advances in Cryptology — CRYPTO’ 89 Proceedings, vol. 435 of Lecture
Notes in Computer Science, pp. 428–446. Springer New York, 1990.

[45] Damgård, I.: A design principle for hash functions. In Brassard,
G. (ed.), Advances in Cryptology — CRYPTO’ 89 Proceedings, vol. 435 of
Lecture Notes in Computer Science, pp. 416–427. Springer New York, 1990.

[46] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the
indifferentiability of the sponge construction. In Smart, N. (ed.),
Advances in Cryptology – EUROCRYPT 2008, vol. 4965 of Lecture Notes in
Computer Science, pp. 181–197. Springer Berlin Heidelberg, 2008.

[47] Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Cryp-
tographic sponge functions. Submission to NIST (Round 2), 2011.
http://sponge.noekeon.org/CSF-0.1.pdf.

[48] Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryp-
tosystems. In Menezes, A., Vanstone, S. (eds.), Advances in
Cryptology-CRYPT0’90, vol. 537 of Lecture Notes in Computer Science,
pp. 2–21. Springer Berlin Heidelberg, 1991.

[49] Alekseychuk, A., Schevtsov, A.: Upper estimates of imbalance
of bilinear approximations for round functions of block ciphers. In
Cybernetics and Systems Analysis, vol. 46, pp. 376–385. Springer US, 2010.

[50] Kovalchuk, L., Bezditnyi, V.: Upper bounds for the average proba-
bilities of difference characteristics of block ciphers with alternation of
Markov transformations and generalized Markov transformations. In
Cybernetics and Systems Analysis, vol. 50, pp. 386–393. Springer US, 2014.

[51] Carlet, C.: Vectorial Boolean functions for cryptography. Boolean Models
and Methods in Mathematics, Computer Science, and Engineering.
Cambridge University Press, 2010.

[52] Matsui, M., Yamagishi, A.: A new method for known plaintext
attack of FEAL cipher. In Rueppel, R. A. (ed.), Advances in Cryptology
— EUROCRYPT’ 92, vol. 658 of Lecture Notes in Computer Science, pp.
81–91. Springer Berlin Heidelberg, 1993.

[53] Nyberg, K.: Linear approximation of block ciphers. In De Santis,
A. (ed.), Advances in Cryptology — EUROCRYPT’94, vol. 950 of Lecture

37

http://sponge.noekeon.org/CSF-0.1.pdf

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Notes in Computer Science, pp. 439–444. Springer Berlin Heidelberg, 1995.

[54] Matsui, M.: Linear cryptanalysis method for DES cipher. In Helle-
seth, T. (ed.), Advances in Cryptology — EUROCRYPT ’93, vol. 765 of
Lecture Notes in Computer Science, pp. 386–397. Springer Berlin Heidel-
berg, 1994.

[55] Bard, G. V.: Algebraic cryptanalysis. Springer, 2009.

[56] Canteaut, A.: Open problems related to algebraic attacks on stream
ciphers. In Ytrehus, Ø. (ed.), Coding and Cryptography, vol. 3969 of Lec-
ture Notes in Computer Science, pp. 120–134. Springer Berlin Heidelberg,
2006.

[57] Albrecht, M.: Algorithmic algebraic techniques and their application to
block cipher cryptanalysis. Ph.D. thesis, Royal Holloway, University of
London, the United Kingdom, 2010.

[58] Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with
overdefined systems of equations. Cryptology ePrint Archive, Report
2002/044, 2002. http://eprint.iacr.org/.

[59] Weinmann, R.-P.: Evaluating algebraic attacks on the AES. Ph.D. thesis,
Darmstadt University of Technology, Germany, 2003.

[60] Kleiman, E.: High performance computing techniques for attacking reduced
version of AES using XL and XSL methods. Ph.D. thesis, Iowa State
University, USA, 2010.

[61] Bulygin, S., Brickenstein, M.: Obtaining and solving systems of
equations in key variables only for the small variants of AES. In
Mathematics in Computer Science, vol. 3, pp. 185–200. Birkhäuser-Verlag,
2010.

[62] Courtois, N., Bard, G.: Algebraic cryptanalysis of the Data Encryp-
tion Standard. In Galbraith, S. (ed.), Cryptography and Coding, vol.
4887 of Lecture Notes in Computer Science, pp. 152–169. Springer Berlin
Heidelberg, 2007.

[63] Kazymyrov, O., Oliynykov, R.: Construction of an overdefined sys-
tem of equations describing the cipher “Labyrinth”. In Applied Radio
Electronics, vol. 8, pp. 247–251. Kharkiv National University of Radio-
electronics, 2009. (In Russian).

38

http://eprint.iacr.org/

Introduction

[64] Kazymyrov, O., Oliynykov, R.: Algebraic properties of Kalyna’s
key schedule. In Radioelectronic and computer systems, vol. 5, pp. 61–66.
National Aerospace University, Ukraine, 2010. (In Russian).

[65] Nyberg, K.: Differentially uniform mappings for cryptography. In
Helleseth, T. (ed.), Advances in Cryptology - EUROCRYPT’93, vol.
765 of Lecture Notes in Computer Science, pp. 55–64. Springer Berlin
Heidelberg, 1994.

[66] Biham, E.: New types of cryptanalytic attacks using related keys. In
Helleseth, T. (ed.), Advances in Cryptology — EUROCRYPT ’93, vol.
765 of Lecture Notes in Computer Science, pp. 398–409. Springer Berlin
Heidelberg, 1994.

[67] Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the
full AES-192 and AES-256. In Matsui, M. (ed.), Advances in Cryptology
– ASIACRYPT 2009, vol. 5912 of Lecture Notes in Computer Science, pp.
1–18. Springer Berlin Heidelberg, 2009.

[68] Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique crypt-
analysis of the full AES. In Lee, D., Wang, X. (eds.), Advances in
Cryptology – ASIACRYPT 2011, vol. 7073 of Lecture Notes in Computer
Science, pp. 344–371. Springer Berlin Heidelberg, 2011.

[69] Phan, R.-W.: Advanced slide attacks revisited: Realigning slide on
DES. In Dawson, E., Vaudenay, S. (eds.), Progress in Cryptology –
Mycrypt 2005, vol. 3715 of Lecture Notes in Computer Science, pp. 263–276.
Springer Berlin Heidelberg, 2005.

[70] Biryukov, A., Wagner, D.: Slide attacks. In Knudsen, L. (ed.), Fast
Software Encryption, vol. 1636 of Lecture Notes in Computer Science, pp.
245–259. Springer Berlin Heidelberg, 1999.

[71] Saarinen, M.-J.: A chosen key attack against the secret S-boxes of
GOST. Unpublished manuscript, 1998.

[72] Kazymyrov, O.: Practical recovery of long-term keys of the GOST
28147 cipher based on slide attack. In Science and social problems: Com-
puterization and information technology, pp. 272–273. Kharkiv National
University of Radioelectronics, 2011. (In Russian).

39

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

[73] Isobe, T., Shibutani, K.: All subkeys recovery attack on block ci-
phers: Extending meet-in-the-middle approach. In Knudsen, L., Wu,
H. (eds.), Selected Areas in Cryptography, vol. 7707 of Lecture Notes in
Computer Science, pp. 202–221. Springer Berlin Heidelberg, 2013.

[74] Oliynykov, R.: Methods for analysis and synthesis of perspective symmetric
cryptographic transformations. A thesis for a doctor of technical sciences
degree in the specialty 05.13.05 – computer systems and components,
Kharkiv National University of Radio Electronics, Ukraine, 2014. (In
Russian).

[75] Zhou, Y., Feng, D.: Side-channel attacks: Ten years after its publication
and the impacts on cryptographic module security testing. Cryptology
ePrint Archive, Report 2005/388, 2005. http://eprint.iacr.org/.

[76] Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations
against side-channel attacks and glitches. In Ning, P., Qing, S., Li, N.
(eds.), Information and Communications Security, vol. 4307 of Lecture Notes
in Computer Science, pp. 529–545. Springer Berlin Heidelberg, 2006.

[77] Kazymyrov, O., Kazymyrova, V., Oliynykov, R.: A method for
generation of high-nonlinear S-boxes based on gradient descent. In
Mathematical Aspects of Cryptography, vol. 5, pp. 71–78. Steklov Mathe-
matical Institute, 2014.

[78] Nyberg, K.: Perfect nonlinear S-boxes. In Davies, D. (ed.), Advances
in Cryptology - EUROCRYPT’91, vol. 547 of Lecture Notes in Computer
Science, pp. 378–386. Springer Berlin Heidelberg, 1991.

[79] Chabaud, F., Vaudenay, S.: Links between differential and linear
cryptanalysis. In Advances in Cryptology—EUROCRYPT’94, pp. 356–365.
Springer, 1995.

[80] Budaghyan, L.: Construction and analysis of cryptographic functions.
Habilitation Thesis, University of Paris 8, France, 2013.

[81] Kazymyrov, O., Oliynykov, R.: Choosing substitutions for symmet-
ric cryptographic algorithms based on the analysis of teir algebraic
properties. In Mathematical modeling. Information Technology. Automated
control systems., vol. 925, pp. 79–86. V. N. Karazin Kharkov National
University, Ukraine, 2010. (In Russian).

40

http://eprint.iacr.org/

Introduction

[82] Budaghyan, L., Kazymyrov, O.: Verification of restricted EA-
equivalence for vectorial Boolean functions. In Özbudak, F.,
Rodríguez-Henríquez, F. (eds.), Arithmetic of Finite Fields, vol. 7369
of Lecture Notes in Computer Science, pp. 108–118. Springer Berlin Hei-
delberg, 2012.

[83] Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and
permutations suitable for DES-like cryptosystems. In Designs, Codes and
Cryptography, vol. 15, pp. 125–156. Kluwer Academic Publishers, 1998.

[84] Krause, M.: BDD-based cryptanalysis of keystream generators. In
Knudsen, L. (ed.), Advances in Cryptology — EUROCRYPT 2002, vol.
2332 of Lecture Notes in Computer Science, pp. 222–237. Springer Berlin
Heidelberg, 2002.

[85] Stegemann, D.: Extended BDD-based cryptanalysis of keystream
generators. In Adams, C., Miri, A., Wiener, M. (eds.), Selected Areas
in Cryptography, vol. 4876 of Lecture Notes in Computer Science, pp. 17–35.
Springer Berlin Heidelberg, 2007.

[86] Schilling, T., Raddum, H.: Solving compressed right hand side
equation systems with linear absorption. In Helleseth, T., Jedwab, J.
(eds.), Sequences and Their Applications – SETA 2012, vol. 7280 of Lecture
Notes in Computer Science, pp. 291–302. Springer Berlin Heidelberg, 2012.

[87] Cid, C., Murphy, S., Robshaw, M.: Small scale variants of the AES.
In Gilbert, H., Handschuh, H. (eds.), Fast Software Encryption, vol.
3557 of Lecture Notes in Computer Science, pp. 145–162. Springer Berlin
Heidelberg, 2005.

[88] Shirai, T., Shibutani, K.: On the diffusion matrix employed in
the Whirlpool hashing function. NESSIE public reports, 2003. https:

//www.cosic.esat.kuleuven.be/nessie/nessie/reports/phase2/

whirlpool-20030311.pdf.

[89] Augot, D., Finiasz, M.: Direct construction of recursive MDS dif-
fusion layers using shortened BCH codes. In Pre-proceedings of Fast
Software Encryption (FSE 2014), 2014.

[90] Stein, W., et al.: Sage mathematics software (version 6.2). The Sage
Development Team, 2014. http://www.sagemath.org.

41

https://www.cosic.esat.kuleuven.be/nessie/nessie/reports/phase2/
https://www.cosic.esat.kuleuven.be/nessie/nessie/reports/phase2/
whirlpool-20030311.pdf
http://www.sagemath.org

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

[91] Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A
toolbox for cryptanalysis: Linear and affine equivalence algorithms.
In Biham, E. (ed.), Advances in Cryptology — EUROCRYPT 2003, vol.
2656 of Lecture Notes in Computer Science, pp. 33–50. Springer Berlin
Heidelberg, 2003.

[92] Burnett, L.: Heuristic optimization of Boolean functions and substitution
boxes for cryptography. Ph.D. thesis, Queensland University of Technol-
ogy, Australia, 2005.

[93] Lafitte, F., Heule, D. V., Hamme, J. V.: Cryptographic Boolean
functions with R. In The R Journal, vol. 3, pp. 44–47. June, 2011.

[94] Mishra, P. R.: Calculating cryptographic degree of an S-box. Cryptol-
ogy ePrint Archive, Report 2014/145, 2014. http://eprint.iacr.org/.

[95] Chmiel, K.: Fast computation of approximation tables. In Saeed, K.,
Pejaś, J. (eds.), Information Processing and Security Systems, pp. 125–134.
Springer US, 2005.

[96] Yu, Y., Wang, M., Li, Y.: Constructing differential 4-uniform permu-
tations from know ones. Cryptology ePrint Archive, Report 2011/047, 2011.
http://eprint.iacr.org/.

[97] Tesař, P.: A new method for generating high non-linearity S-boxes.
In Radioengineering, vol. 19, pp. 23–26. Brno University of Technology,
2010. http://www.radioeng.cz/fulltexts/2010/10_01_023_026.pdf.

[98] Matyukhin, D., Rudskoy, V., Shishkin, V.: A perspective hashing
algorithm. Materials of XII scientific conference RusCrypto’2010, 2010.
http://www.ruscrypto.ru/resource/summary/rc2010/ruscrypto_

2010_054.zip. (In Russian).

[99] AlTawy, R., Youssef, A. M.: Integral distinguishers for reduced-
round Stribog. Cryptology ePrint Archive, Report 2013/648, 2013. http:

//eprint.iacr.org/.

[100] Kazymyrov, O., et al.: Source code of the cross-platform imple-
mentation of Stribog. GitHub repository, 2013. https://github.com/

okazymyrov/stribog.

[101] Kazymyrov, O., Leontiev, S., Popov, V., Smyshlyaev, S.: On cre-
ating effective software implementations of national cryptographic

42

http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.radioeng.cz/fulltexts/2010/10_01_023_026.pdf
http://www.ruscrypto.ru/resource/summary/rc2010/ruscrypto_2010_054.zip
http://www.ruscrypto.ru/resource/summary/rc2010/ruscrypto_2010_054.zip
http://eprint.iacr.org/
http://eprint.iacr.org/
https://github.com/okazymyrov/stribog
https://github.com/okazymyrov/stribog

Introduction

standards. Materials of XV scientific conference RusCrypto, 2013. http:

//www.ruscrypto.ru/accotiation/archive/rc2013. (In Russian).

[102] Guo, J., Nikolic, I., Peyrin, T., Wang, L.: Cryptanalysis of Zorro.
Cryptology ePrint Archive, Report 2013/713, 2013. http://eprint.iacr.

org/.

[103] Hong, J., Kim, W.-H.: TMD-tradeoff and state entropy loss considera-
tions of streamcipher MICKEY. In Maitra, S., Veni Madhavan, C.,
Venkatesan, R. (eds.), Progress in Cryptology - INDOCRYPT 2005, vol.
3797 of Lecture Notes in Computer Science, pp. 169–182. Springer Berlin
Heidelberg, 2005.

[104] Jansen, C., Helleseth, T., Kholosha, A.: Cascade jump controlled
sequence generator and Pomaranch stream cipher. In Robshaw, M.,
Billet, O. (eds.), New Stream Cipher Designs, vol. 4986 of Lecture Notes
in Computer Science, pp. 224–243. Springer Berlin Heidelberg, 2008.

[105] Jansen, C.: The state space structure of the MICKEY stream cipher.
Proceedings of the 32rd WIC Symposium on Information Theory in the Benelux
and The 1st Joint WIC/IEEE Symposium on Information Theory and Signal
Processing in the Benelux, 2011.

[106] Jansen, C.: Analysis of the nonlinear function of the Mickey S-register.
Proceedings of the 33rd WIC Symposium on Information Theory in the Benelux
and The 2nd Joint WIC/IEEE Symposium on Information Theory and Signal
Processing in the Benelux, pp. 60–67, 2012.

[107] Olshansky, D.: Introduce GOST R 34.11-2012 hash function. Electronic
source, 2014. http://rt.openssl.org/Ticket/Display.html?id=3311.

43

http://www.ruscrypto.ru/accotiation/archive/rc2013
http://www.ruscrypto.ru/accotiation/archive/rc2013
http://eprint.iacr.org/
http://eprint.iacr.org/
http://rt.openssl.org/Ticket/Display.html?id=3311

——————————————–

Scientific Results

PAPER I
algebraic attacks using binary

decision diagrams
∗

Oleksandr Kazymyrov Håvard Raddum

I

∗Kazymyrov, O., Raddum, H.: Algebraic attacks using binary decision diagrams. In
Pre-proceedings of BalkanCryptSec 2014, pp. 31–44, 2014.

47

Algebraic Attacks Using Binary Decision
Diagrams

Oleksandr Kazymyrov† Håvard Raddum‡

† University of Bergen, Norway
Oleksandr.Kazymyrov@ii.uib.no

‡ Simula Research Laboratories, Norway
haavardr@simula.no

Abstract

Algebraic attacks have been developed against symmetric primitives
during the last decade. In this paper we represent equation systems using
binary decision diagrams, and explain techniques for solving them. Next,
we do experiments with systems describing reduced versions of DES and
AES, as well as systems for the problem of determining EA-equivalence.
We compare our results against Gröbner basis and CryptoMiniSat.

Keywords: binary decision diagram, block cipher, algebraic attack, sym-
metric primitives.

1. IN T R O D U C T I O N

The main idea of modern algebraic attacks is to describe an encryption
scheme via a system of equations and solve it. Equivalence of finding a key
to a cryptosystem and solving a system of equations was first mentioned
by Claude Shannon [1]. However, algebraic attacks against cryptographic
primitives began to develop actively only in the early 2000s. Several methods
to attack hash functions, stream and block ciphers have been described in
[2–10]..

In the middle of the 20th century it was proposed to use binary decision
diagrams (BDDs) for representing Boolean functions [11, 12]. This repre-
sentation has several advantages. Many logical operations on BDDs can be
implemented by polynomial-time graph manipulation algorithms, and the
memory consumption can be extremely low, even for very complex Boolean
functions [12]. Most modern cryptographic primitives are based on binary

49

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

logic because of the large spread of binary computers. Therefore, the descrip-
tion of cryptographic transformations using Boolean or vectorial Boolean
functions is an easy task.

Several attacks based on BDDs exist for stream ciphers. Their efficiency was
demonstrated both for general methods and for particular cases on A5/1, E0
and Trivium [13, 14]. In this paper we extend previous results on block ciphers
and present new specific strategies and approaches for solving systems of
equations based on BDDs.

We apply the proposed methods on DES with reduced number of rounds,
on MiniAES (a small variant of Rijndael) and on the problem of determin-
ing EA-equivalence. Our experiments on DES allow us to break six rounds
in approximately one minute on a MacBook Air 2013. This is a factor 220

improvement over the best earlier algebraic attack on DES using MiniSAT
[5]. There have been several earlier attempts to break MiniAES [7, 15, 16].
Approaches that exploit the short key in MiniAES (only 16 bits) succeed very
quickly, but the general methods of F4 and XL/XSL failed to solve systems
representing more than one round of MiniAES. The approach we use in this
paper does not exploit the short key, while still solving systems representing
10 rounds of MiniAES using approximately 45 minutes and 8GB of memory.

The rest of the paper is organized as follows. Section 2 explains BDDs
and the fundamental operations we do on them. Section 3 describes our
approach for solving BDD systems, and introduces some solving strategies.
Section 4 gives the details and results of our algebraic attack against DES and
MiniAES as well as the EA-equivalence problem, comparing complexities
against SAT-solver and Gröbner base techniques. Finally, Section 5 concludes
the paper and give some directions for further research.

2. B I N A RY DE C I S I O N D I A G R A M FU N D A M E N TA L S

The literature discusses several variants of BDDs. For clarity we will always
mean a zero-suppressed, reduced, and ordered BDD in this paper. A comprehen-
sive treatment of BDDs can be found in [12]. In this section we only give a
brief description with emphasis on visualization and our use of a BDD.

50

Algebraic Attacks Using Binary Decision Diagrams

����

��������

������������

��������

�

� �

�

� �

�

�

Fig. 1: Example of a BDD with four levels.

2.1 . B I N A RY DE C I S I O N D I A G R A M S

A BDD is a directed acyclic graph. Exactly one node in the graph, called the
source node, has no incoming edges, and exactly one node in the graph, called
the sink node, has no outgoing edges. All nodes except for the sink node are
called internal nodes, and have one or two outgoing edges, called the 0-edge
and/or the 1-edge. In most other descriptions of BDDs, each internal node is
associated with a variable. In this paper each internal node will be associated
with a linear combination of variables. There are no edges between nodes
associated with the same linear combination.

When visualizing a BDD, we draw the graph from top to bottom, with
the source node on top, the sink node at the bottom, and all edges directed
downwards. All internal nodes are organized in horizontal levels between
the sink and source nodes. One level consists of all nodes associated to one
particular linear combination, and we write the linear combination to the left
of the level. Dotted edges indicate 0-edges while solid lines indicate 1-edges.
An example of a BDD with four levels associated with linear combinations in
four variables is shown in Fig. 1.

In the literature there are various ways to understand a BDD. Some interpret
a BDD to represent a family of sets while others see a BDD as an efficient
encoding of a Boolean function. In this paper we put emphasis on the fact
that a path from the source to the sink node assigns values to the linear
combinations of the levels. If we choose the b-edge (b ∈ {0, 1}) out from a
node, we assign the value b to the linear combination associated with the
level of the node. Any path from the source to the sink node gives values to

51

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

����

����

����

����

����

����

����

����

�

��

� �� �

� ��	 ���� �� �
 ��

������ �	 �����
�� �� �� �� �����	�� �

���� �� ���� �� �	��

���
 ����

�� ��

�

Fig. 2: BDD representation of the S-box {5,C,8,F,9,7,2,B,6,A,0,D,E,4,3,1}.

the linear combinations and can be regarded as a right-hand side in a system
of linear equations.

2 .2 . RE P R E S E N T I N G A N S-B O X A S A BDD

We are interested in finding a BDD that represents a given S-box with n input
bits and m output bits. Let the input bits and output bits of the S-box be
x0, . . . , xn−1 and y0, . . . , ym−1, respectively. Let the first n levels be associated
with x0, . . . , xn−1 (x0 for the source node and xn−1 for level n), and build
a complete binary tree from x0 to xn−1. Next, assign y0, . . . , ym−1 to the m
lowest levels (with y0 at the highest of these), and build a complete binary
tree upwards from the sink node to the y0-level, branching in 0-edges and
1-edges. Then there will be only one path from a given node at the y0-level
to the sink node. There will be 2m nodes at the y0-level, each representing a
unique path to the sink node, assigning values to y0, . . . , ym−1.

Any path from the source node down to level xn−1 will assign values to
the input bits x0, . . . , xn−2. Selecting a 0-edge or a 1-edge out of a node at the
xn−1-level will complete the assignment of input bits. This edge is connected
to the node at the y0-level whose unique path to the sink node will give the
correct output of the S-box. Joining all nodes at the xn−1-level to all nodes
at the y0-level in this way will complete the construction of the BDD. Fig. 2
shows an example of a BDD representing a 4× 4 S-box.

52

Algebraic Attacks Using Binary Decision Diagrams

2.3 . BA S I C OP E R AT I O N S O N A BDD

We must be able to run the reduction algorithm [17] on a BDD, bringing the
BDD into a reduced state. The reduction algorithm basically merges nodes
representing equivalent Boolean functions, thus minimizing the number of
nodes in the BDD. For a fixed order of the linear combinations, a reduced
BDD is unique. There are two other operations that forms the core of linear
absorption (explained later). Both were described in [18], but we repeat them
briefly here for completeness.

2 .3 .1 . SWA P P I N G L E V E L S .

This operation swaps the linear combinations at two adjacent levels, and
was first described in [19], using single variables. When changing the order
of the levels, nodes and edges must be re-arranged in the BDD to preserve
the underlying function. Fortunately, swapping levels is a local operation,
meaning that only nodes and edges at the two involved levels need to be
touched while the rest of the BDD remains intact. The algorithm for swapping
two levels has low complexity, but the number of nodes on the lowest level
may double in the worst case.

After swapping two levels, the BDD may not be in the reduced state, and
it may be necessary to run the reduction algorithm. Hence, the number of
nodes in the BDD after swapping two levels may increase or decrease. By
repeatedly swapping levels one may put the set of linear combinations for the
levels into any desired order. Finding the order of levels that give the fewest
nodes is an NP-complete problem [20].

2 .3 .2 . AD D I N G L E V E L S .

Traditionally, the levels in a BDD have been associated with single variables
and not linear combinations. It has therefore not been natural to think of
“adding” one level onto another. This changes when we have linear combi-
nations associated with the levels. If l1 and l2 are two linear combinations
associated to two adjacent levels (l1 above l2), we are interested in replacing
l2 with l1 + l2. The algorithm for adding levels was first described in [18], and
follows the same logic as with swapping levels. Nodes and edges at the levels
for l1 and l2 must be rearranged to preserve the underlying function, but the
rest of the BDD remains the same. The complexity is similar to swapping,
and the number of nodes at the new level associated to l1 + l2 may double in

53

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

the worst case. The reduction algorithm should be run after adding levels to
make sure the BDD remains in a reduced state.

3. SO LV I N G SY S T E M S O F EQ U AT I O N S W I T H L I N E A R
AB S O R P T I O N

By repeatedly swapping and adding linear combinations, we can essentially
do all linear operations on the linear combinations of the BDD. We can, for
instance, perform Gaussian elimination on the set of linear combinations. As
will become clear in the following, a barrier to find a solution to a system of
equations arises when there are dependencies among the linear combinations
of the levels in a BDD. We overcome this problem by using linear absorption.
The technique was first described in [18], but we include an example of the
procedure here as it is central in our approach to solve non-linear equation
systems.

3 .1 . AB S O R B I N G ON E L I N E A R DE P E N D E N C Y

The attentive reader will have noticed that the linear combinations in the
example BDD in Section 2.1 are not independent. If we label them l0, l1, l2, l3
from top to bottom we have l0 + l2 + l3 = 0. Thus, when we select a path in
the BDD and create the corresponding linear system of equations, we may or
may not get a consistent system. If the values assigned to l0, l2 and l3 sum to 0
we get a solution, if not, the system is inconsistent. We use linear absorption
to remove all paths that yield inconsistent systems as follows.

First, swap l0 and l1 to obtain the BDD in Fig. 3a. Next, use addition of
linear combinations to add l0 onto l2, and obtain the BDD in Fig. 3b. Finally,
we use addition again to add l0 + l2 to l3. This creates the 0-vector as linear
combination for the lowest level, resulting in the BDD shown in Fig. 3c.

When selecting a path in the BDD now, it does not make sense to choose a
1-edge out of a node on the level associated with 0. Such a path would yield
a “0 = 1”-assignment. Hence we can delete all outgoing 1-edges from the
nodes at the 0-level. Now we are certain that any remaining path will yield
a system of linear equations that is consistent with the linear dependency
l0 + l2 + l3 = 0.

Moreover, the whole level associated with 0 can be removed. It is easy
to show that the Boolean function represented by a node on this level is

54

Algebraic Attacks Using Binary Decision Diagrams

��������

����

������������

��������

�

��

�

�

�

�

�

(a) Swapping
l0 and l1.

��������

����

��������

���������

�

��

�

�

�

�

�

(b) Adding
l0 to l2.

��������

����

��������

���

�

� �

��

��

�

(c) Adding
l0 + l2 to l3

��������

����

��������

�

� �

�

�

(d) Removing
0-level

Fig. 3: Absorbing one linear dependency.

equal to the function for the node pointed to by the 0-edge. Hence, all nodes
on the 0-level can be merged with their children along the 0-edge, and the
level disappears. We say that the linear dependency l0 + l2 + l3 = 0 has been
absorbed. The resulting BDD for our example is shown in Fig. 3d.

In general, the removal of 1-edges from a level associated with the 0-vector
may create internal nodes with no incoming edges. We call these orphan nodes
as they have no parents. After absorbing one linear dependency, all orphan
nodes, and subgraphs only reachable through an orphan node, should be
removed as part of the reduction procedure.

55

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

If there are several dependencies among the linear combinations in a
BDD, we can easily find all and absorb them one after another. When all
dependencies have been absorbed, we know that any remaining path in the
BDD will give a consistent linear system of equations, which in turn is solved
to find the values of the actual variables.

3 .2 . BU I L D I N G A N D SO LV I N G EQ U AT I O N SY S T E M S A S BDDS

It is rather straight-forward to build a system of equations representing a
cryptographic primitive as a set of BDDs. For an encryption algorithm, the
user-selected key bits become variables. We also look at the cipher blocks
between the rounds of the primitive. We assign variable names to the bits
between rounds, such that the input and output bits of all non-linear compo-
nents can be written as linear combinations of variables.

For each non-linear component we then construct the corresponding BDD,
like explained for S-boxes in Section 2.2. We replace the xi and yj with the
linear combinations actually occuring in the cipher. After this we are left with
a set of BDDs with linear combinations from the same pool of variables.

To proceed with finding a solution to the system we must join the BDDs
together. There exist algorithms for joining two BDDs [17][12, p. 16], but they
are somewhat complex, and assume single variables associated with the levels.
We do it in a much simpler way:

• To join two BDDs, just replace the sink node of one with the source
node of the other.

With this simple operation, we can easily string together some or all BDDs
in a system and get fewer, or only one, BDD(s) in the set. If we join all BDDs
together, finding a solution is equivalent to finding a path in the joined BDD
that gives a right hand side yielding a consistent linear system. As can be
expected, for interesting systems there will be many dependencies among the
linear combinations in a fully joined BDD, so finding a path respecting all
these dependencies is not trivial. We can, however, try to handle this problem
with linear absorption, and if we can absorb all linear dependencies in the
BDD we know that any remaining path will give a consistent linear system.
The algorithm for solving a system of BDDs can then be summed up as:

1. Join BDDs.

2. Absorb all linear dependencies.

56

Algebraic Attacks Using Binary Decision Diagrams

3. Select path and solve resulting system of linear equations.

3 .3 . CO M P L E X I T Y

The first and third steps in the general solving algorithm are easy (assuming
a modest number of BDDs and variables, which is the case even for full
scale ciphers). Hence the second step must be hard if our cryptographic
primitives are to remain secure. What we get when joining all BDDs together
is a very long and very slim BDD, basically just a string of many small BDDs.
The number of nodes at one level may double when adding or swapping
two linear combinations, and after absorbing a whole linear dependency the
total number of nodes may, in the worst case, double. This seems to lead to
exponential growth in the number of dependencies absorbed, but in practice
the number of nodes after absorbing a linear dependency is very far from
doubling. Remember, the number of nodes may also decrease when applying
a swap or an add operation.

If we expect a unique or only a few solutions, the BDD after absorbing all
dependencies will have only one or a few paths. A BDD with only one path
has only one node at each level, tied together with a string of 0- and 1-edges.
Since all the systems we are interested in have very few solutions, we know
that the number of nodes must decrease sharply before the last dependencies
are absorbed. This means we will always reach some tipping point when
absorbing dependencies, where the number of nodes in the BDD starts to
decrease.

We take as our measure of complexity the largest number of nodes that
a BDD contained during linear absorption. This is a measure of memory
complexity, and is not equivalent to the time it takes to solve a system. On
the other hand, there is no guessing involved in our solving method, and no
operations that must be repeated an exponential number of times. Memory
rather than time is the resource that constrains us. With 8GB of RAM it is
hard to find a system where our solver runs for over an hour without either
finishing or running out of memory. Therefore, we believe the largest number
of nodes we had during the solving process is the most meaningful measure
of complexity.

57

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

3.4 . SO LV I N G S T R AT E G I E S

When joining together many BDDs and absorbing all linear dependencies,
the solving complexity depends heavily on the order the BDDs are joined.
Finding the ordering of BDDs that gives the minimum complexity is probably
a hard problem. During our experiments we have not found a strategy for
ordering that is universally best. However, we describe here some strategies
for how to join and absorb with the aim to keep the complexity down.

3 .4 .1 . AU TO M AT I C OR D E R I N G .

This is a default strategy, that can be applied to any system and does not
require any deeper understanding of how the BDDs have been made. The
procedure is to look for the subset of BDDs with the smallest total number of
nodes, that still contains some dependencies. When this subset is found, we
join these BDDs and absorb all dependencies. The number of BDDs in the set
will then decrease by at least one, and we repeat the procedure until there is
only one BDD left and all dependencies have been absorbed.

3 .4 .2 . D I V I D E -A N D -CO N Q U E R .

This strategy takes the approach that it is always easy to join a few BDDs
together and absorb all dependencies. To solve the system though, one sooner
or later has to join all BDDs, and absorb all remaining dependencies. The
assumption is that the true complexity of solving the system will only appear
when all BDDs are joined. Thus we would like to have only a minimum of
dependencies left when we are forced to join all BDDs together.

The divide-and-conquer strategy is to split the system in two (roughly)
equally large halves, such that there are many dependencies within each half
but only a few that use linear combinations from BDDs in both halves. We can
then attack each half independently, trying to absorb all dependencies. If we
succeed, we are left with one BDD with only independent linear combinations
in each half. These can now be joined, and we absorb the relatively few
remaining dependencies in the full BDD. When attacking one half, we use
the Divide-and-Conquer technique recursively, treating the half as a complete
system. The recursion stops when a “system” only contains one or two of the
original BDDs.

58

Algebraic Attacks Using Binary Decision Diagrams

Finding the optimal way to split a system in two equally sized parts seems
to be a hard problem in general. However, knowledge of how the system has
been constructed can help in this regard, as we will see with DES.

3 .4 .3 . F I N D I N G GO O D JO I N I N G OR D E R B Y CRY P TA N A LY S I S .

When we are trying to solve a system representing a cryptographic primitive,
analysis of the primitive may help in deciding a good order of how to join
the BDDs. The strategy is simply to decide on an order for the original BDDs,
join all of them into one long BDD, and absorb all linear dependencies. The
order of the BDDs should be such that each linear dependency only involves
linear combinations on levels that are relatively close to each other. Absorbing
each linear combination then becomes a somewhat local operation that only
affects a small part of the BDD, keeping the complexity down.

4. AP P L I C AT I O N O F T H E AL G E B R A I C AT TA C K BA S E D O N
BDDS

This section describes practical aspects and results of the proposed attack
for DES and MiniAES as well as the time comparison of solving extended
affine equivalence (EA) problem using Gröbner basis, CrytoMiniSat and BDD
approaches.

4 .1 . A PR A C T I C A L AT TA C K O N RE D U C E D DES

Previous results on solving DES systems can be found in [5] where the authors
solve a 6-round version, and in [21] where DES with 6, 7 and 8 rounds are
attacked. In all papers it was necessary to fix 20+ of the key bits to their
correct values for the attacks to work, reducing the effective key size to at
most 36 bits. The actual solving of equation systems was done by MiniSAT
[22].

Our best result is that we can solve a 6-round system using 8 chosen plain-
text/ciphertext pairs without fixing or guessing any variables. The average
complexity is 220.571 nodes. Solving the system for 6-round DES with 8 chosen
plaintexts takes approximately one minute on a MacBook Air 2013 with 8GB
of memory.

59

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

4.1 .1 . CO N S T R U C T I N G DES SY S T E M O F EQ U AT I O N S .

We assume the reader is familiar with the operations of DES [23]. The only
non-linear part of DES is the application of the eight 6× 4 S-boxes in each
round. We assign variables to the output of the S-boxes in each round, except
for the last two whose output can be expressed as linear conbinations of other
variables and ciphertext bits. The key schedule of DES is linear, so we only
need to assign variables to the 56 user-selected key bits. After this the input
and output bits of each S-box can be expressed as linear combinations of
variables, and we construct a BDD for each S-box as described in Section
2.2. Each BDD contains approximately 185 nodes after reduction, the eight
different S-boxes vary slightly in size.

4 .1 .2 . SO LV I N G ST R AT E G Y.

The solving strategy we found to work best for DES is Divide-and-Conquer.
We then need to divide our system in two equally big halves, and the key
schedule of DES gives a clear hint on how to do this: One half of the 56 key bits
only appears in the inputs to S-boxes 1− 4, while the other half only appears
in the S-boxes 5− 8. This applies to all rounds. For each round, we put the
BDDs representing S-boxes 1− 4 into the set A0, and the BDDs for S-boxes
5− 8 into the set B0. Then we try to solve A0 and B0 independently, using
Divide-and-Conquer again. For dividing A0, we have found (by exhaustive
search) that the best division is to group together the same two S-boxes from
odd-numbered rounds, i.e. S-boxes 1 and 2, and the other S-boxes (3 and 4)
from even-numbered rounds, into set A1. The other BDDs from A0 go into the
set B1. See Fig. 4 for a sketch of the division used. B0 is re-divided similarly,
and further divisions are done by exhaustive search on the fly.

4 .1 .3 . SE V E R A L PL A I N T E X T S .

When using several plaintext/ciphertext pairs, we build one DES system for
each. These systems will have the same 56 key-bit variables, but variables
representing internal state will, in general, be different for each plaintext.
However, if we carefully choose the difference between the plaintexts we can
reuse a lot of internal variables across different systems. For producing up
to eight different plaintexts, we vary only three bits in the left half. Then the
input to the first round will be equal for each text, and the difference in the
input to the second round will only be in three bits. These bits are chosen so

60

Algebraic Attacks Using Binary Decision Diagrams

Fig. 4: Division used for Divide-and-Conquer strategy for DES.

they only affect one S-box each. Tracing differences further we find that we
may reuse variables across systems as far as into the fourth round.

We merge the different systems by joining all BDDs arising from the same
S-box in the same round. As these share the same key variables, and often
many other variables as well, there are many linear dependencies among the
levels in the joined BDD. These dependencies are absorbed, and after this
pre-processing we are left with a system of 8r BDDs representing an r-round
version of DES, regardless of the number of chosen plainexts used.

4 .1 .4 . EX T R A C T I N G L I N E A R EQ U AT I O N S .

When using more than four plainetxts in the experiments, we observed that
the heaviest step while solving did not occur when joining the sets A0 and B0,
but rather when joining A1 and B1. After all dependencies in A0 had been
absorbed the resulting BDD was very slim, with many levels only containing
one node.

If a level only has outgoing b-edges (which is often the case with one-
node levels) we know that the associated linear combination is equal to b,
(b ∈ {0, 1}). We can use this linear equation to eliminate a variable from
the system. Extracting as many linear equations as possible and eliminating
variables after all dependencies in A0 had been absorbed, it became trivial to
absorb all dependencies in B0, and the full system.

4 .1 .5 . RE S U LT S F O R DES EX P E R I M E N T S .

We have solved systems representing DES for 4, 5 and 6 rounds, using 1− 8
plaintext/ciphertext pairs. For each choice of rounds and number of plaintexts

61

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 1: Complexities for solving reduced-round DES-systems. Each cell shows the minimum,
average and maximum complexity observed over 100 instances.

rounds

texts
1 2 3 4 5 6 7 8

222.651 210.800 29.281 29.585 29.748 29.976 210.103 210.283

4 222.715 214.506 210.606 210.257 29.805 210.070 210.203 210.381

222.770 217.473 213.006 212.029 29.892 210.412 210.978 210.446

219.472 213.831 211.440 212.126 212.289 212.583 212.749

5 222.110 216.455 213.526 213.995 214.212 214.410 214.704

223.805 219.329 215.618 216.633 216.758 216.882 217.414

224.506 222.206 219.932

6 224.929 222.779 220.571

225.352 224.324 221.915

we randomly generated and solved 100 systems, recording their complexities.
The minimum, maximum and average (in bold) complexities observed are
summarized in Table 1.

There are rather large variations in complexities inside most cells in Table
1. In each cell, the key and one plaintext were chosen at random for each of
the 100 instances, and some choices give much lower complexity than others.
We can not explain the differences, and have not been able to identify which
choices lead to low solving complexity.

4 .2 . A PR A C T I C A L AT TA C K O N SC A L E D -DO W N VE R S I O N O F AES

There are many scaled-down versions of the AES cipher (MiniAES). The first
one that follows Rinjdael’s description was proposed in [24]. A few years later
Cid et al. analyzed many small AES variants in [7], and Elizabeth Kleiman
tried to attack MiniAES in her master and doctoral theses [15, 25]. Also, an
equation system representing MiniAES was solved in [16].

4 .2 .1 . DE S C R I P T I O N O F M I N IAES.

The constants of our studied encryption model are the block length (16 bits)
and the key size (16 bits). This scaled-down cipher corresponds to AES-128
[26]. In contrast to original AES, the mini version is a nibble (4 bits) oriented

62

Algebraic Attacks Using Binary Decision Diagrams

cipher with the state represented as a 2 × 2 matrix. The round function
consists of four routines: AddroundKey (AKk), SubBytes (SB), ShiftRows (SR)
and MixColumns (MC). The encryption algorithm can be described as

EK(M) =
r

∏
i=1

(AKki
◦MC ◦ SR ◦ SB) ◦ AKk0(M),

where r is the number of rounds. The substitution and MDS matrix were
taken from [24].

4 .2 .2 . CO N S T R U C T I N G SY S T E M O F BDDS F O R M I N IAES.

Unlike DES, MiniAES has non-linear components in the key schedule. We
assign variables to the output of the S-boxes in each round, except for the
last one. Additionally, we have to add 8 extra variables for each round key,
except the first one with 16 bits of the user-selected key. Then the number of
BDDs and variables is equal to 2r + 4r = 6r and (16 + 8r) + 16(r− 1) = 24r,
respectively.

4 .2 .3 . SO LV I N G ST R AT E G Y.

The best strategy we found for solving the MiniAES systems was to determine
a good order of BDDs by cryptanalysis, join all BDDs and do a full absorption
of all dependencies.

The order was found by carefully studying which variables that appear in
each BDD, both from the key schedule and the encryption function. Variables
from the cipher state only appear in two consecutive rounds. It is therefore
clear that the four BDDs from the same round should be joined close to each
other, and also close to the two BDDs from the key schedule producing the
round key used for the round. The BDDs were put together in groups of six
this way, following the rounds of the cipher.

The order of the BDDs in each group was determined by looking at which
variables that appear in each individual BDD. Two BDDs that share many
variables should be adjacent in the final order. After doing this for the four,
five and six round versions it became clear that a pattern emerged for the
joining order. This pattern was followed for the higher number of rounds.

63

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 2: Complexities of solving MiniAES systems.

Rounds 4 5 6 7 8 9 10

Complexity 222.404 223.051 223.440 224.154 224.217 224.862 224.961

4.2 .4 . RE S U LT S F O R M I N IAES EX P E R I M E N T S .

The complexities for solving MiniAES systems for various rounds are summed
up in Table 2. Of course, MiniAES only has a 16-bit key and can be broken
very fast using for instance CryptoMiniSAT, which essentially does a very
intelligent brute force on the key [27, p. 250-251]. In [16], the authors create
the polynomials for the ciphertext bits using only the user-selected key bits as
variables. This results in 16 polynomials in 16 variables containing approxi-
mately 215 terms each, that can be solved using PolyBoRi. Our algorithm does
not take advantage of the short key, and should be compared to the earlier
attacks described in [7, 15].

For each number of rounds we solved 10 different instances, using 1 known
plaintext/ciphertext pair. We were not able to reduce the complexities by
using more pairs. The observed complexities for one particular number of
rounds did not vary, so the minimum, maximum and average complexities
are all the same. We have also changed the S-box and the MixColumn matrix
to see if other choices affected the complexity, but we found the complexity
remains the same for all variants tried.

It has been observed before that for one plaintext/ciphertext pair in scaled-
down AES versions there may be more than one key that encrypts the given
plaintext into the given ciphertext. This was shown in our experiments as
well, often we had two, three or even four solutions to our systems.

4 .3 . PR O B L E M O F D E T E R M I N I N G EA-E Q U I VA L E N C E

To get a good comparison against other solvers we have chosen the problem
of EA-equivalence [28]. This problem is interesting in cryptography, and
it can be solved via non-linear systems of equations. There are no special
variables in these systems, like key bits, so we get a fair comparison between
CryptoMiniSAT, Gröbner bases and the BDD method.

Two functions are EA-equivalent if the following equation holds for all
x ∈ GF(2)n

F(x) = M1 · G(M2 · x⊕V2)⊕M3 · x⊕V1, (1)

64

Algebraic Attacks Using Binary Decision Diagrams

Table 3: Time complexity for solving EA-equivalence problem

n Number of solutions
Seconds used to solve
BDD GB SAT

1 4 2 24.05 23.8 213.71

2 4 60 24.86 † 216.77

3 4 2 23.92 23.9 212.08

4 5 1 210.20 211.43 -

5 5 155 210.48 † -

where elements of {M1, M2, M3, V1, V2} have dimensions {m×m, n× n, m×
n, m, n} and M1 and M2 are non-singular [28]. For simplicity, we set n = m.
The EA-equivalence problem can then be formulated as follows:

For given functions F, G : GF(2)n 7→ GF(2)n find M1, M2, M3, V1, V2 such that
(1) holds or show that such vectors and matrices do not exist.

The variables in the system to be solved are the entries in M1, M2, M3, V1
and V2, so the number of variables is 3n2 + 2n. The maximum number of
equations and a system’s degree can be calculated theoretically for given F
and G [29]. However, for n ≤ 6 the system can always be made quadratic by
introducing the matrix M

′
3 = M−1

1 ·M3 and the vector V
′
1 = M−1

1 · V1 and
add them as additional equations and variables.

For n = 4 and n = 5 the problem of EA-equivalence is tractable, and
the complexity comparison of Gröbner basis (GB), CryptoMiniSat (SAT) and
proposed approach (BDD) is presented in Table 3 for five different instances.
Unlike the two other methods, CryptoMiniSat only finds one solution by
default. Therefore, we have used the option “n = +infinity” in CryptoMiniSat
to force it to find all solutions and get a fair comparison.

In Table 3 “†” means that the Gröbner bases solver implemented in Sage
crashes after several minutes with out-of-memory message, and “–” means
that CryptoMiniSat spent more than 78 hours (218 seconds) without finding a
solution [30].

5. CO N C L U S I O N S

In this paper we have explained an approach to build and solve equation
systems using binary decision diagrams and reported on experiments with

65

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

this method. The best previous results on algebraic attacks against DES use
guessing at least 20 of the key bits. We improved on these results using BDDs,
breaking six rounds of DES without guessing any variables.

For MiniAES we have also received results which are better than the previ-
ous algebraic attacks described in [7] and [15]. According to our experiments a
system representing 10 rounds of MiniAES can be solved in 45 minutes on an
ordinary computer using the BDD approach. However, other attacks exploit-
ing the short key have lower complexities. At the same time, the BDD method
is shown to be advantageous compared to Gröbner basis and CryptoMiniSat
on solving the EA-equivalence problem.

These experiments indicate the BDD approach can compete with other
methods in applications which require solving the non-linear equation sys-
tems. There are several open questions to address in future research. Does
there exist a generic algorithm giving an order of BDDs that yield low com-
plexity when applying linear absorption? Is it possible to analytically estimate
the complexity of solving a BDD system of equations, or do we have to ac-
tually run the solver to find out? Which ciphers are most vulnerable against
this type of algebraic attacks? We hope the potential of BDDs in cryptanalysis
will be thoroughly examined in future research.

RE F E R E N C E S

[1] Shannon, C. E.: A mathematical theory of communication. In Bell
system technical journal, vol. 27, pp. 623–656. University of Illinois Press,
1948.

[2] Raddum, H., Semaev, I.: Solving multiple right hand sides linear equa-
tions. In Designs, Codes and Cryptography, vol. 49, pp. 147–160. Springer
US, 2008.

[3] Courtois, N.: Fast algebraic attacks on stream ciphers with linear
feedback. In Boneh, D. (ed.), Advances in Cryptology - CRYPTO 2003, vol.
2729 of Lecture Notes in Computer Science, pp. 176–194. Springer Berlin
Heidelberg, 2003.

[4] Courtois, N., Bard, G., Wagner, D.: Algebraic and slide attacks
on KeeLoq. In Nyberg, K. (ed.), Fast Software Encryption, vol. 5086 of
Lecture Notes in Computer Science, pp. 97–115. Springer Berlin Heidelberg,
2008.

66

Algebraic Attacks Using Binary Decision Diagrams

[5] Courtois, N., Bard, G.: Algebraic cryptanalysis of the Data Encryp-
tion Standard. In Galbraith, S. (ed.), Cryptography and Coding, vol.
4887 of Lecture Notes in Computer Science, pp. 152–169. Springer Berlin
Heidelberg, 2007.

[6] Helleseth, T., Rønjom, S.: Simplifying algebraic attacks with uni-
variate analysis. In Information Theory and Applications Workshop (ITA),
pp. 1–7. Institute of Electrical and Electronics Engineers, 2011.

[7] Cid, C., Murphy, S., Robshaw, M.: Small scale variants of the AES.
In Gilbert, H., Handschuh, H. (eds.), Fast Software Encryption, vol.
3557 of Lecture Notes in Computer Science, pp. 145–162. Springer Berlin
Heidelberg, 2005.

[8] Bard, G. V.: Algebraic cryptanalysis. Springer, 2009.

[9] Albrecht, M.: Algorithmic algebraic techniques and their application to
block cipher cryptanalysis. Ph.D. thesis, Royal Holloway, University of
London, the United Kingdom, 2010.

[10] Daum, M.: Cryptanalysis of Hash functions of the MD4-family. Ph.D. thesis,
Ruhr University Bochum, Germany, 2005.

[11] Lee, C.-Y.: Representation of switching circuits by binary-decision pro-
grams. In Bell System Technical Journal, vol. 38, pp. 985–999. 1959.

[12] Knuth, D. E.: The Art of Computer Programming. Bitwise Tricks & Tech-
niques. Binary Decision Diagrams, vol. 4. Addison-Wesley, 2009.

[13] Krause, M.: BDD-based cryptanalysis of keystream generators. In
Knudsen, L. (ed.), Advances in Cryptology — EUROCRYPT 2002, vol.
2332 of Lecture Notes in Computer Science, pp. 222–237. Springer Berlin
Heidelberg, 2002.

[14] Stegemann, D.: Extended BDD-based cryptanalysis of keystream gen-
erators. In Adams, C., Miri, A., Wiener, M. (eds.), Selected Areas in
Cryptography, vol. 4876 of Lecture Notes in Computer Science, pp. 17–35.
Springer Berlin Heidelberg, 2007.

[15] Kleiman, E.: High performance computing techniques for attacking reduced
version of AES using XL and XSL methods. Ph.D. thesis, Iowa State Univer-
sity, USA, 2010.

67

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

[16] Bulygin, S., Brickenstein, M.: Obtaining and solving systems of
equations in key variables only for the small variants of AES. In Mathe-
matics in Computer Science, vol. 3, pp. 185–200. Birkhäuser-Verlag, 2010.

[17] Bryant, R.: Graph-based algorithms for Boolean function manipula-
tion. In Computers, IEEE Transactions, vol. C-35, pp. 677–691. Institute of
Electrical and Electronics Engineers, 1986.

[18] Schilling, T., Raddum, H.: Solving compressed right hand side equa-
tion systems with linear absorption. In Helleseth, T., Jedwab, J.
(eds.), Sequences and Their Applications – SETA 2012, vol. 7280 of Lecture
Notes in Computer Science, pp. 291–302. Springer Berlin Heidelberg, 2012.

[19] Rudell, R.: Dynamic variable ordering for ordered binary decision
diagrams. In Computer-Aided Design, 1993. ICCAD-93. Digest of Technical
Papers., 1993 IEEE/ACM International Conference on, pp. 42–47. Institute of
Electrical and Electronics Engineers, 1993.

[20] Bollig, B., Wegener, I.: Improving the variable ordering of OBDDs
is NP-complete. In Computers, IEEE Transactions, vol. 45, pp. 993–1002.
Institute of Electrical and Electronics Engineers, 1996.

[21] Perret, J. C. F. L., Spaenlehauer, P. J.: Algebraic differential crypt-
analysis of DES. In Proceedings Western European Workshop on Research in
Cryptology - WEWoRC, pp. 1–5, 2009.

[22] Eén, N., Sörensson, N.: An extensible SAT-solver. In Giunchiglia,
E., Tacchella, A. (eds.), Theory and Applications of Satisfiability Testing,
vol. 2919 of Lecture Notes in Computer Science, pp. 502–518. Springer Berlin
Heidelberg, 2004.

[23] FIPS 46–3: Data Encryption Standard (DES). National Institute of Stan-
dards and Technology, 1993.

[24] Phan, R. C.-W.: Mini Advanced Encryption Standard (Mini-AES): A
testbed for cryptanalysis students. In Cryptologia, vol. 26, pp. 283–306.
Taylor & Francis, 2002.

[25] Kleiman, E.: The XL and XSL attacks on Baby Rijndael. Master’s thesis,
Iowa State University, USA, 2005. https://orion.math.iastate.edu/

dept/thesisarchive/MS/EKleimanMSSS05.pdf.

68

https://orion.math.iastate.edu/dept/thesisarchive/MS/EKleimanMSSS05.pdf
https://orion.math.iastate.edu/dept/thesisarchive/MS/EKleimanMSSS05.pdf

Algebraic Attacks Using Binary Decision Diagrams

[26] FIPS PUB 197: Advanced Encryption Standard (AES). National Institute
of Standards and Technology, 2001.

[27] Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to
cryptographic problems. In Kullmann, O. (ed.), Theory and Applications
of Satisfiability Testing - SAT 2009, vol. 5584 of Lecture Notes in Computer
Science, pp. 244–257. Springer Berlin Heidelberg, 2009.

[28] Budaghyan, L., Kazymyrov, O.: Verification of restricted EA-
equivalence for vectorial Boolean functions. In Özbudak, F.,
Rodríguez-Henríquez, F. (eds.), Arithmetic of Finite Fields, vol. 7369 of
Lecture Notes in Computer Science, pp. 108–118. Springer Berlin Heidelberg,
2012.

[29] Eilertsen, A. M., Kazymyrov, O., Kazymyrova, V., Storetvedt,
M.: A Sage library for analysis of nonlinear binary mappings. Pre-
proceedings of Central European Conference on Cryptology (CECC14), pp.
69–78, 2014.

[30] Stein, W., et al.: Sage mathematics software (version 6.2). The Sage
Development Team, 2014. http://www.sagemath.org.

69

http://www.sagemath.org

PAPER II
a sage library for analysis of

nonlinear binary mappings
∗

Anna Maria Eilertsen Oleksandr Kazymyrov
Valentyna Kazymyrova Maksim Storetvedt

II

∗Eilertsen, A. M., Kazymyrov, O., Kazymyrova, V., Storetvedt, M.: A Sage library
for analysis of nonlinear binary mappings. In Pre-proceedings of Central European Conference on
Cryptology (CECC14), pp. 69–78, 2014.

71

A Sage Library For Analysis Of Nonlinear
Binary Mappings

Anna Maria Eilertsen Oleksandr Kazymyrov
Valentyna Kazymyrova Maksim Storetvedt

Department of Informatics
University of Bergen, Norway

Oleksandr.Kazymyrov@ii.uib.no
{Anna.Eilertsen,Valentyna.Kazymyrova,Maksim.Storetvedt}@student.uib.no

Abstract

Many new ciphers are being introduced every year. Each well-educated
researcher with a degree in computer science can create a good crypto-
primitive, which will be unbreakable awhile. The main blocks of modern
ciphers are nonlinear components also known as substitutions. The tool-
box (library) for decreasing time of analyzing such components is given
in this paper. It can be used for investigation cryptographic properties of
arbitrary nonlinear binary mappings used in symmetric primitives.

Keywords: substitution, Sage, cryptanalysis, cryptographic properties

1. IN T R O D U C T I O N

Today’s information society has the conventional wisdom to enhance the
security of information systems. A significant role in this process has the
implementation of cryptographic primitives that provide the required level
of cryptographic security. Enough time has passed since cryptography has
become public science. As a result, in many areas ciphers have started to be
used for protection of sensitive information.

Each year several new cryptoprimitives are issued [1, 2]. Many designers
justify the resistance of the developed algorithms to known attacks such as
differential, linear or algebraic. Meanwhile, an independent analysis requires
tools to analyze both basic components and entire encryption algorithms. On
the other hand, if you are a developer of a perspective algorithm, there is a
need to analyze basic components as well. Choosing linear layers is a relatively

73

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

simple task when only few indicators are considered [3]. The situation is
completely opposite for nonlinear layers which are usually presented as
parallel application of substitutions (S-boxes). Effective and simultaneous
calculation of cryptographic properties of S-boxes is a nontrivial task.

Analysis of current state shows today there is a number of tools that can be
considered as a partial solution of the problem [4–8]. However, the crypto-
graphic community needs a universal approach to calculate cryptographic
indicators for arbitrary binary mappings. In this paper we propose a tool for
generating and analyzing arbitrary vectorial Boolean functions F : Fn

2 7→ Fm
2 .

The rest of the paper is organized as follows. Section 2 describes the the-
oretical background of substitution’s criteria. Section 3 introduces general
overview of the “Sbox” library and explains the main components and meth-
ods. Section 4 includes practical applications of the proposed library. Finally,
Section 5 presents our conclusions.

2. PR E L I M I N A R I E S

In this section we present theoretical aspects of representation and construc-
tion of vectorial Boolean functions. The relevant properties used in symmetric
primitives are also considered in this section. All definitions and indicators
are well-known and one can see [9] for more details.

2 .1 . DE F I N I T I O N S A N D N O TAT I O N S

Let n and m be two positive integers. Define Fn
2 as a vector space of all binary

vectors of length n, where F2 is the Galois field with elements {0, 1}. Then
(n, m)-function is a vectorial Boolean function F : Fn

2 7→ Fm
2 . Boolean functions

f1, f2, . . . , fm, such that F(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)),
and their linear combination are called coordinate and component functions
of F, respectively. If m = 1 then a vectorial Boolean function has a single
output bit and is equivalent to a Boolean function. To find algebraic properties
of (n, m)-functions, a vector space often has a structure of finite field F2n .

2 .2 . CRY P TO G R A P H I C P R O P E RT I E S O F BO O L E A N F U N C T I O N S

Suppose f : Fn
2 7→ F2 is a Boolean function of n variables. Algebraic normal

form of such function is defined as

74

A Sage Library for Analysis of Nonlinear Binary Mappings

f (x1, x2, . . . , xn) = ∑
I∈P(1,...,n)

(
∏
i∈I

xi

)
,

where P(z) denotes the power set of z. The algebraic degree of f (deg(f)) is
the maximum degree of the monomial with nonzero coefficient.

A Boolean function of n variables is called balanced if hw(f) = 2n−1, where

hw(f) =
2n−1

∑
x=0

f (x). The correlation between arbitrary Boolean function f (x),

where x = (x1, x2, . . . , xn), and the set of all linear functions is determined by
Walsh transformation

W(w) =
2n−1

∑
x=0

(−1) f (x)⊕lw(x),

where lw(x) = w · x = w1x1 ⊕ w2x2 ⊕ . . . wnxn. The nonlinearity is related to
the Walsh values as

NL(f) =
1
2

(
2n − max

∀w,w 6=0
|W(w)|

)
.

Autocorrelation of f (r f (α)) shows how the function differs from itself
shifted on several positions, i.e.

r f (α) =
2n−1

∑
x=0

(−1) f (x)⊕ f (x⊕α),

where α ∈ Fn
2 . For cryptography the maximal value of the function r f (α) is

of interest, which can be found as

ACmax(f) = max
∀α,α 6=0

∣∣∣r f (α)
∣∣∣ .

Let σ be the sum-of-square indicator, then

σ =
2n−1

∑
α=0

r2
f (α).

75

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Let hw(α) be a binary Hamming weight of α ∈ Fn
2 [10]. Then we say that

f (x) satisfies propagation criterion of order k (PC(k)) if and only if for all
nonzero vectors α ∈ Fn

2 the following system is true
1 ≤ hw(α) ≤ k;
2n−1

∑
x=0

f (x)⊕ f (x⊕ α) = 2n−1.

The strict avalanche criterion (SAC) corresponds to PC(1).
A Boolean function is correlation immune of order m (CI(m)) if the system

of equations {
1 ≤ hw(w) ≤ m;
W(w) = 0.

is valid for all w ∈ Fn
2 . If the function is balanced and satisfy CI(m) simulta-

neously, then such function is called m-resilient.
To prevent some misunderstanding we present the indicator called al-

gebraic immunity of a Boolean function. The minimum algebraic degree
of g(x) 6= 0 of the set {g | f (x) · g(x) = 0} ∪ {g | (f (x)⊕ 1) · g(x) = 0} is
called algebraic immunity (AI) of f .

2 .3 . CRY P TO G R A P H I C P R O P E RT I E S O F S U B S T I T U T I O N S

While Boolean functions are adopted mainly as filtering functions in stream
ciphers, vectorial Boolean function are used in block ciphers and hash func-
tions as substitutions. For theoretical analysis the univariate representation
is one of the best ways to consider cryptographic properties of the binary
mappings. However, field operations are not good optimized in modern com-
puters as operations with Boolean functions, especially for large n. Therefore,
the representation of (n, m)-functions as the set of component functions is a
better way for practical implementations.

Suppose substitution S is a table representation of a vectorial Boolean
function F = (f1, . . . , fm) from Fn

2 to Fm
2 . Define {hj = j · F | 0 < j < 2m} as

the set of component functions of F. Then

• nonlinearity of S is

NL(S) = min
0<j<2m

(
NL(hj)

)
;

76

A Sage Library for Analysis of Nonlinear Binary Mappings

• minimum degree of S is

deg(S) = min
0<j<2m

(
deg(hj)

)
;

• the maximum value of autocorrelation spectrum of S is

ACmax(S) = max
0<j<2m

(
ACmax(hj)

)
;

• S satisfies strict avalanche criterion if every hj satisfies SAC;

• S satisfies propagation criterion of order k if every hj satisfies PC(k);

• S is correlation immune of order k if every hj is CI(k);

• S is balanced (permutation) if every hj is balanced;

• S is k-resilient if every hj is k-resilient.

The similar properties for vectorial Boolean functions are given in [9].
While the maximum value of the approximation table (λ) can be calculated

directly from the nonlinearity of the S-box as λ = 2n−1 −NL(S), the maxi-
mum value of differential table (MDT) cannot be easily evaluated from the
component functions. Let δ be the maximum number of times when the input
difference maps to the output difference of the given S-box. Then

δ = max
α∈Fn

2 ,α 6=0,β∈Fm
2

#{x | S(x)⊕ S(x⊕ α) = β}.

This indicator is also known as δ-uniformity [9].
The ways to represent a substitution as a system of equations over F2 are

given in [11, 12]. Define density as the fraction of nonzero elements in a
system of equations. Then, a substitution provides better protection against
algebraic attacks if the system

• has higher degree;

• has fewer equations;

• is more dense.

Unambiguous theoretical relation between these parameters is an unsolved
problem [12]. When we are talking about the algebraic immunity of an S-box
(AI(S)), then we mean the smallest degree of the system.

77

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

2.4 . EQ U I VA L E N C E O F V E C TO R I A L BO O L E A N F U N C T I O N S

Two functions F, G : Fn
2 7→ Fm

2 are called extended affine (EA) equivalent if
there exist such affine permutations A1 = L1(x) + c1, A2 = L2(x) + c2 and
arbitrary linear function L3(x) that

F(x) = A1 ◦ G ◦ A2(x) + L3(x).

If L3(x) = const, or L3(x) = 0, c1 = 0, and c2 = 0 then F and G are affine, or
linear equivalent, respectively. Moreover, for at least one missing element of
L1(x), L2(x), L3(x), c1, c2 the functions are called restricted EA (REA) equiva-
lent [13].

In [14] F and G are considered as GF(x, y) = {{x, y} | y = F(x)}. They are
Carlet-Charpin-Zinoviev (CCZ) equivalent, if for F2(x) = L3(x) + L4 ◦ G(x)
and permutation F1(x) = L1(x) + L2 ◦ G(x) the following equation is hold

F(x) = F2 ◦ F−1
1 (x),

where L1(x), L2(x), L3(x), L4(x) are arbitrary linear functions.
Both CCZ- and EA-equivalence preserve extended Walsh spectrum and

δ-uniformity. However, the minimum degree remains the same only for the
EA-equivalent functions. [9].

3. DE S I G N S P E C I F I C AT I O N A N D M A I N C O M P O N E N T S

In this section we describe basic components of the “Sbox” library, and some
methods for both generation and cryptanalysis. The source code is available
at github and distributed under GPL v2 [15].

3 .1 . GE N E R A L O V E RV I E W O F T H E L I B R A RY

There are many ready-made solutions [4, 5, 8]. However, all of them have
certain limitations. For example, the class SBox from the package mq in Sage
is optimized only for small values [4]. By increasing n, functions do not return
the expected results, i.e. the absence of the system of equations of degree 2
for the AES substitution [16]. Most of the other programs or libraries are de-
signed to work with a limited number of properties and/or just with Boolean
functions. As a consequence, software to analyze arbitrary vectorial Boolean
functions was developed taking into account publicly available optimized
algorithms.

78

A Sage Library for Analysis of Nonlinear Binary Mappings

The proposed implementation is written as an extension to Sage and
presented as a package with the main class “Sbox” [15]. Fig. 1 depicts the
general overview of the library. It consists of three main parts: Sbox, CSbox
and GSbox. While most cryptanalytic functions are presented in CSbox and
connected to C/C++ code via Cython, GSbox includes methods for generation
nonlinear binary mappings. Using Python as the main language is beneficial
considering that the language is somewhat easy to learn and use. It does in
general a slower run time, but this disadvantage may be offset by Cython and
C/C++, making extensive mathematical calculations faster.

Fig. 1: The general overview of “Sbox”

It should also be noted that some methods use integrated in Sage packages
(i.e. finite_rings) and cannot be transfered into other software. However, the
C/C++ code is an independent implementation and one can easily port it to
own software.

3 .1 .1 . PE R F O R M A N C E C O M PA R I S O N W I T H O T H E R TO O L S .

The performance comparison of software, even written in one language, is
a difficult task. It depends on many parameters including operation system,
compilations, memory and processors. We have not created best of the best
tool, but we took into account a number of articles with optimized algorithms
for calculation of cryptographic indicators [17, 18]. Hence, we will present time
comparisons as the most critical indicator of the proposed implementation in
Section 4.

79

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 1: Correspondence of vectorial Boolean functions to methods defined in “Sbox.sage”

Vectorial Boolean functions Correspondent methods

Gold gold
Kasami kasami
Welch welch
Niho niho

Inverse inverse
Dobbertin dobbertin

Dicson dicson
APN for n = 6 APN6

Optimal permutation
polynomials for n = 4

OP4

3.2 . GE N E R AT I O N O F V E C TO R I A L BO O L E A N F U N C T I O N S

All functions that belong to this group start with “gen_” and defined in
“GSbox.sage”. Most of them are based on theoretical methods described in
[9, 19]. The correspondence between methods implemented in the library and
well-known names are presented in Table 1.

The library has also methods to find CCZ-(CCZ) and EA-equivalence
(EA). They do not allow to find vectorial Boolean functions with certain
characteristics by themselves, however, they play very important roles in
cryptography. For completeness and additional experiments the “Sbox” class
includes methods for generating random substitutions and permutations
that are specified by “random_substitution” and “random_permutation”,
respectively.

In order to unify different cases a single method “generate_sbox” was
created, which has parameters “method” to specify generation method and
“T” to define equivalence. The optional parameter “G” is used for setting a
user-defined polynomial in the case of “method=polynomial”.

3 .3 . CRY P TA N A LY S I S O F V E C TO R I A L BO O L E A N F U N C T I O N S

This group contains methods starting with “cr_”, which are described in
“CSbox.sage”. Most of the methods are also based on theoretical algorithms
[9]. Nevertheless, the calculation of some indicators has been optimized, i.e.
calculation of the algebraic immunity or cycles. Table 2 shows the correspon-

80

A Sage Library for Analysis of Nonlinear Binary Mappings

Table 2: Correspondence between cryptographic properties and methods in the library

Indicators Methods in “Sbox”

Balanceness balanced
Nonlinearity nonlinearity

Absolute indicator autocorrelation
Propagation criterion PC
Correlation immunity CI

Sum-of-square indicator SSI
Minimum degree minimum_degree

Resilience resilient
Strict avalanche criterion SAC

Bijection is_bijection
Maximum of differential table MDT

Maximum of linear
approximation table

MLT

Cycles cycles
Algebraic immunity algebraic_immunity_sbox

dence between the indicators described in Section 2, and the methods from
the “Sbox” library.

To investigate the number of cryptographic properties in some applications
such as generation of pseudo-random sequences (i.e. using OFB mode), it is
necessary to study the period lengths of sequences obtained at the output of
the block cipher. For these purposes, the “cycles” method was implemented.

This group also contains a number of auxiliary functions such as finding the
univariate polynomial or the system of equations describing the substitution;
checking APN, or CCZ-equivalence properties [20]. Some examples of the
use of different methods are given in Section 4.

3 .4 . OT H E R U S E F U L M E T H O D S

The last group of methods is optional and is used as an extension of function-
ality. Table 3 contains the most important methods and their short description.
As it can be seen from the table, the methods’ names define their functional
purpose.

81

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 3: Optional methods of “Sbox’

Methods Comments

get_field return the filed F2max{n,m}

get_ring return the ring F2max{n,m} [x]

get_mg
return a multiplicative
generator of the field

get_sbox return the substitution

get_polynomial
return the univariate polynomial

of the substitution
set_sbox set a substitution for analysis
Tr_pol return a trace of input polynomial

g2p
transform a given polynomial with

multiplicative element to the
internal representation

p2g inverse method to g2p

4. AP P L I C AT I O N O F T H E “SB O X” L I B R A RY

To give an example of the library usage, we present the main steps of gen-
eration of the APN permutation for n = 6. First let us give a mathematical
definition of such function [20].

Theorem 1. Let α be a multiplicative generator of F26 with irreducible polynomial
f (x) = x6 + x4 + x3 + x + 1. Then the APN function

F(x) = αx3 + α5x10 + α4x24

is CCZ-equivalent to an APN permutation over F26 .

For example, for the linear function

L(x, y) = (tr6/3(α
4x) + αtr6/3(y), tr6/3(αx) + αtr6/3(α

4y)),

where tr6/3 = x + x23
, y = F(x), the function GH = L(GF) is the APN

permutation.
Using the above description one can easily start repeating the following

example in Sage. First we need to identify the main variables, including the
ring F26 [x] (P), a multiplicative generator (g) of F26 , and the trace (tr).

82

A Sage Library for Analysis of Nonlinear Binary Mappings

sage: %runfile ./Sbox.sage
sage: S = Sbox(n=6,m=6)
sage: P = S.get_ring()
sage: g = S.get_mg()
a
sage: tr = S.Tr_pol(x=P("x"),n=6,m=3)
sage: tr
x^8 + x

Next it is necessary to specify linear functions and convert them from
polynomial representations to matrix forms [13].
sage: M1 = S.l2m(tr.subs(P("(%s)*x"%(g^4))))
sage: M2 = S.l2m(g*tr)
sage: M3 = S.l2m(tr.subs(P("(%s)*x"%(g))))
sage: M4 = S.l2m(g*tr.subs(P("(%s)*x"%(g^4))))

In the end, we apply CCZ-equivalence to the function F and check on APN
properties.
sage: F = "g*x^3+g^5*x^10+g^4*x^24"
sage: S.generate_sbox(method="polynomial",G=F,T="CCZ",M1=M1,M2=M2,

↪→ M3=M3,M4=M4)
sage: S.is_bijection()
True
sage: S.is_APN()
True
sage: S.MDT()
2

The same result can be achieved by the following commands.
sage: S = Sbox(n=6,m=6)
sage: S.generate_sbox(method=’APN6’)
sage: S.is_bijection()
True
sage: S.is_APN()
True

The above example shows, that hundred of strings of other libraries can be
replaced by a few lines of the proposed library to achieve the same function-
ality. On the other hand, the performance needs to be at a high level. Fig. 2
shows the time complexity of several frequently used methods for n = m.

All results are presented as the average values of 1000 runs on Macbook Pro
Retina Mid 2012 [21]. One can easily notice that the figure doesn’t show the
results for every n. This is due to the fact that every function has limitations
either in memory or in time. For example, the time needed for counting the
value of algebraic immunity is negligible, while the memory is growing very

83

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

Demension of substitutions

Ti
m

e
in

se
co

nd
s

MDT
MLT

Minumum degree
Algebraic immunity

Fig. 2: The relationship between the dimension of random substitutions and time of calculation

fast. Consequently, every function has the maximum values of n or m after
which the indicators become difficult to calculate on an ordinary computer.

Other examples for different values of n and m is given are Table 4. One
can see that the library can work correctly with any dimension, but in the
same time has some limitations.

Table 4: Performance of different methods from the “Sbox” library given in ms

Properties
(n, m)-functions

(6,10) (8,1) (8,4) (10,2) (10,8) (3,12) (12,3) (12,6) (12,9)
MDT 0.083 0.17 0.17 2.34 2.34 0.037 37.15 37.15 38.02
MLT 1.23 0.068 0.126 0.114 4.9 0.501 0.708 5.25 41.69

Algebraic immunity 1 8.91 2.24 6.17 22.4 - 39.8 75.9 -
Minimum degree 89.64 0.35 4.77 3.92 329.3 48.67 35.78 320.89 2631

Balancedness 0.102 0.331 0.338 1.26 1.32 0.025 5.13 5.13 5.01
ACmax(S) 5.89 109.6 110.6 2951.2 2818.4 0.1 112202 117490 114815

Interpolation polynomial 112.2 457.1 457.1 7586 14454 11.74 281838 288403 275422
Cycles 0.263 1.78 2.69 8.13 25.7 0.074 41.69 72.45 158.49

PC 6.03 89.1 89.1 1446 1446 0.098 23442 23442 24547

From a practical point of view the “Sbox” library can be used to analyze
nonlinear components of the existing cryptographic primitives. The substitu-

84

A Sage Library for Analysis of Nonlinear Binary Mappings

Table 5: Comparison of 8-bit S-boxes

Properties AES
GOST R

34.11-2012

STB

34.101.31-2011

Kalyna’s
S0

Proposed
in [23]

MDT 4 8 8 8 8
MLT 16 28 26 32 24

Absolute indicator 32 96 80 88 80
SSI 133120 258688 232960 244480 194944

Minimum degree 7 7 6 7 7
Algebraic immunity 2 3 3 3 3

tion comparison of AES, GOST R 34.11-2012, STB 34.101.31-2011, "Kalyna"
(S0) [22], and a substitution proposed in [23] is given in Table 5.

5. CO N C L U S I O N S

It has been indicated quite clear that practical realization of theoretically
proved results is time and resource consuming in most cases. Conducted
analysis has shown that no sufficiently effective tools of finding characteristics
of arbitrary substitutions exist to date.

The “Sbox” library implementation allows to solve many problems related
to cryptanalysis. It includes lots of known generation methods and functions
for computing permutations’ properties. Moreover, the library is designed in
the way that gives an opportunity to extent its functionality quite easily.

RE F E R E N C E S

[1] Canetti, R., Garay, J. A. (eds.): Advances in Cryptology - CRYPTO 2013
- 33rd Annual Cryptology Conference, Santa Barbara, CA, USA, August 18-22,
2013. Proceedings, Part I, vol. 8042 of Lecture Notes in Computer Science.
Springer, 2013.

[2] International Association for Cryptologic Research: Fast Software Encryp-
tion 2014, March 2014. http://fse2014.isg.rhul.ac.uk/.

85

http://fse2014.isg.rhul.ac.uk/

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

[3] Augot, D., Finiasz, M.: Direct construction of recursive MDS diffusion
layers using shortened BCH codes. In Pre-proceedings of Fast Software
Encryption (FSE 2014), 2014.

[4] Stein, W., et al.: Sage mathematics software (version 6.2). The Sage
Development Team, 2014. http://www.sagemath.org.

[5] Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A tool-
box for cryptanalysis: Linear and affine equivalence algorithms. In
Biham, E. (ed.), Advances in Cryptology — EUROCRYPT 2003, vol. 2656
of Lecture Notes in Computer Science, pp. 33–50. Springer Berlin Heidelberg,
2003.

[6] Burnett, L.: Heuristic optimization of Boolean functions and substitution
boxes for cryptography. Ph.D. thesis, Queensland University of Technology,
Australia, 2005.

[7] Albrecht, M.: Algorithmic algebraic techniques and their application to
block cipher cryptanalysis. Ph.D. thesis, Royal Holloway, University of
London, the United Kingdom, 2010.

[8] Lafitte, F., Heule, D. V., Hamme, J. V.: Cryptographic Boolean
functions with R. In The R Journal, vol. 3, pp. 44–47. June, 2011.

[9] Carlet, C.: Vectorial Boolean functions for cryptography. Boolean Mod-
els and Methods in Mathematics, Computer Science, and Engineering.
Cambridge University Press, 2010.

[10] Carlet, C.: Boolean functions for cryptography and error correcting codes.
Boolean Models and Methods in Mathematics, Computer Science, and
Engineering. Cambridge University Press, 2010.

[11] Kleiman, E.: High performance computing techniques for attacking reduced
version of AES using XL and XSL methods. Ph.D. thesis, Iowa State Univer-
sity, USA, 2010.

[12] Kazymyrov, O., Oliynykov, R.: Choosing substitutions for symmetric
cryptographic algorithms based on the analysis of teir algebraic proper-
ties. In Mathematical modeling. Information Technology. Automated control
systems., vol. 925, pp. 79–86. V. N. Karazin Kharkov National University,
Ukraine, 2010. (In Russian).

86

http://www.sagemath.org

A Sage Library for Analysis of Nonlinear Binary Mappings

[13] Budaghyan, L., Kazymyrov, O.: Verification of restricted EA-
equivalence for vectorial Boolean functions. In Özbudak, F.,
Rodríguez-Henríquez, F. (eds.), Arithmetic of Finite Fields, vol. 7369 of
Lecture Notes in Computer Science, pp. 108–118. Springer Berlin Heidelberg,
2012.

[14] Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and
permutations suitable for DES-like cryptosystems. In Designs, Codes and
Cryptography, vol. 15, pp. 125–156. Kluwer Academic Publishers, 1998.

[15] Kazymyrov, O., et al.: Source code of the Sbox library. GitHub reposi-
tory, 2014. https://github.com/okazymyrov/sbox.

[16] Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overde-
fined systems of equations. Cryptology ePrint Archive, Report 2002/044,
2002. http://eprint.iacr.org/.

[17] Mishra, P. R.: Calculating cryptographic degree of an S-box. Cryptology
ePrint Archive, Report 2014/145, 2014. http://eprint.iacr.org/.

[18] Chmiel, K.: Fast computation of approximation tables. In Saeed, K.,
Pejaś, J. (eds.), Information Processing and Security Systems, pp. 125–134.
Springer US, 2005.

[19] Kazymyrov, O., Oliynykov, R.: Application of vectorial Boolean func-
tions for substitutions generation used in symmetric cryptographic trans-
formations. In Information Processing Systems, vol. 6 (104), pp. 97–102. V.
N. Karazin Kharkov National University, Ukraine, 2012 (In Russian).

[20] Browning, K., Dillon, J., McQuistan, M., Wolfe, A.: An APN
permutation in dimension six. In McGuire, G., et al. (eds.), Finite
Fields: Theory and Applications, vol. 518 of Contemporary Mathematics, pp.
33–42. American Mathematical Society, 2010.

[21] Apple: 15-inch MacBook Pro with Retina display. 2.3GHz, 8GB of
1600MHz DDR3L, Mid 2012. Technical Specifications, February 2013. http:
//support.apple.com/kb/sp653.

[22] Oliynykov, R., Gorbenko, I., Dolgov, V., Ruzhentsev, V.: Results
of Ukrainian national public cryptographic competition. In Tatra Moun-
tains Mathematical Publications, vol. 47, pp. 99–113. Mathematical Institute
of Slovak Academy of Sciences, 2010.

87

https://github.com/okazymyrov/sbox
http://eprint.iacr.org/
http://eprint.iacr.org/
http://support.apple.com/kb/sp653
http://support.apple.com/kb/sp653

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

[23] Kazymyrov, O., Kazymyrova, V., Oliynykov, R.: A method for
generation of high-nonlinear S-boxes based on gradient descent. In Math-
ematical Aspects of Cryptography, vol. 5, pp. 71–78. Steklov Mathematical
Institute, 2014.

88

PAPER III
a method for generation of

high-nonlinear s-boxes based on

gradient descent
∗

Oleksandr Kazymyrov Valentyna Kazymyrova
Roman Oliynykov III

∗Kazymyrov, O., Kazymyrova, V., Oliynykov, R.: A method for generation of high-
nonlinear S-boxes based on gradient descent. In Mathematical Aspects of Cryptography, vol. 5, pp.
71–78. Steklov Mathematical Institute, 2014.

89

A Method For Generation Of
High-Nonlinear S-Boxes Based On Gradient

Descent
Oleksandr Kazymyrov† Valentyna Kazymyrova†

Roman Oliynykov‡

† University of Bergen, Norway
Oleksandr.Kazymyrov@ii.uib.no, Valentyna.Kazymyrova@student.uib.no

‡ Kharkov National University of Radioelectronics, Ukraine
ROliynykov@gmail.com

Abstract

Criteria based on the analysis of the properties of vectorial Boolean
functions for selection of substitutions (S-boxes) for symmetric crypto-
graphic primitives are given. We propose an improved gradient descent
method for increasing performance of nonlinear vectorial Boolean func-
tions generation with optimal cryptographic properties. Substitutions
are generated by proposed method for the most common 8-bits input
and output messages have nonlinearity 104, 8-uniformity and algebraic
immunity 3.

Keywords: substitution, nonlinearity, symmetric ciphers, vectorial Boolean
function.

1. IN T R O D U C T I O N

S-boxes are one of the main components that determine the robustness of
modern symmetric cryptographic primitives. They typically perform the
mapping of n-bit input block to the output of m-bits length. Representation
of S-boxes varies depending on kind of problem they are used for. In stream
ciphers substitutions are usually presented in the form of vectorial Boolean
functions [1]. Permutations are a subclass of substitutions and are widely used
in block ciphers in a table form. It is quite easy to transform a substitution
from one form to another.

91

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

To protect cryptographic primitives against various types of attacks a
substitution must satisfy a number of criteria [2, 3]. Taking into account
the large number of existing characteristics, their controversy and partial
interdependence, it is likely impossible to generate a substitution that satisfies
all known requirements. This became a reason to use a substitution satisfying
only mandatory criteria essential for a particular symmetric algorithm. Such
substitutions are called optimal [4]. Optimality criteria may vary depending
on which cipher is considered. Generating of permutations with optimal
criteria is a time- and resource-consuming task, especially for large n and m.

This problem is partially solved by involving the classes of vectorial Boolean
functions, extended affine (EA) and Carlet-Charpin-Zinoviev (CCZ) equiv-
alencies [1, 5]. However, the majority of existent functions have extreme
characteristics of δ-uniformity and nonlinearity, but at the same time do not
possess other properties (i.e., high algebraic immunity) necessary for symmet-
ric cryptographic primitives. It was shown in 2010 that such substitutions exist
[6]. Tesar proposed an algorithm based on combination of genetic algorithm
and total tree searching. In this paper we give more simple and efficient way
of generation substitutions.

In [7] the authors have enhanced the method for generating secure Boolean
functions based on gradient ascension (Hill Climbing) method [8]. In this
paper we propose a modified version of the gradient descent method for
vectorial case, i.e. for functions from Fn

2 to Fm
2 .

2. PR E L I M I N A R I E S

Arbitrary substitution can be represented in at least three different forms:
algebraic normal form (ANF), over the field F2n and a lookup table. The
majority of block ciphers S-boxes have a lookup table form because of their
simple description and understanding. At the same time, an arbitrary permu-
tation can always be associated with a vectorial Boolean function F in F2n [x].
If the substitution is a permutation, then the function F is unique.

A natural way of representing F : Fn
2 7→ Fm

2 is algebraic normal form

∑
I⊆{1,...,n}

aI

(
∏
i∈I

xi

)
, aI ∈ Fm

2 ,

92

A Method for Generation of High-Nonlinear S-Boxes Based on Gradient Descent

sum is calculated in Fm
2 [1]. Algebraic degree of F is the degree of its ANF. F

is called affine if it has the algebraic degree at most 1. When F(0) = 0 affine
vectorial Boolean function is linear.

Two functions F, G : Fn
2 7→ Fm

2 are called EA-equivalent if there are such
affine permutation functions A1(x) = L1(x) + c1, A2(x) = L2(x) + c2 and
arbitrary linear function L3(x) that [1, 5]

F(x) = A1 ◦ G ◦ A2(x) + L3(x).

If L3(x) is a constant from the vector space Fm
2 , then the functions F and

G are called affine-equivalent, and if L3(x) = 0, c1 = 0, c2 = 0 they are linear
equivalent. Affine equivalence was used to prevent the appearance of fixed
points during generation of substitutions for cipher Rijndael [9].

Arbitrary vectorial Boolean function F is δ-uniform if for any a ∈ Fn
2 \{0}

and b ∈ Fm
2 the equation F(x) + F(x + a) = b has no more than δ solutions

[1]. Vectorial Boolean functions that are used as substitutions in block ciphers
must have a small value of δ-uniformity for a sufficient level of protection
against differential attacks [1, 3].

Nonlinearity criterion is closely related to the Walsh transformation, which
can be described by the function

λ(u, v) = ∑
x∈Fn

2

(−1)v·F(x)+u·x,

where the symbol "·" denotes the scalar product in vector spaces Fn
2 and Fm

2 .
Substitutions with small values of Walsh coefficients are optimally protected
against linear cryptanalysis [1, 3]. S-boxes with minimal values of λ(u, v) exist
only for odd n.

These two criteria are most significant when selecting substitutions for new
ciphers. However, there are many other criteria such as: propagation criterion,
maximum value of autocorrelation spectrum, correlation immunity, algebraic
immunity, strict avalanche criterion, etc. [1, 2, 10]. Necessity for most of these
criteria has not yet been proven. For example, the substitution used in AES
does not satisfy most of them [2].

In this paper the optimal substitution refers to a permutation with

• maximum algebraic degree;

• maximum algebraic immunity with the minimum number of equations;

93

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

• maximum values of δ-uniformity and nonlinearity limited by parame-
ters listed above;

• absence of fixed points (cycles of length 1).

For example, for n = 8 an optimal permutation has algebraic degree 7,
algebraic immunity 3 and 441 equations, δ-uniformity under 8, nonlinearity
over 100 and without fixed points.

3. GE N E R AT I O N O F SU B S T I T U T I O N S W I T H CH O S E N
PA R A M E T E R S

In [7] the main idea is to decrease the nonlinearity of given Boolean bent
sequences. In other words, in given bent sequence (truth table) some bits are
changed so that the new sequence is balanced and the nonlinearity is close
to nonlinearity of bent function. In this paper is proposed to use the same
approach, but with two significant differences

• use vectorial Boolean functions instead of Boolean functions;

• use vectorial Boolean functions (substitutions) with minimum δ-uniformity
instead of bent-functions (sequences).

Additionally, in [7] was shown that even a small change of fixed number of
bits in the bent-sequence does not guarantee the achievement of nonlinearity
closed to the maximum.

However, for the vectorial case the following proposition was proven [11].

Proposition 1. Let F : F2n 7→ F2n . Function G is determined so that
G(p1) = F(p2) p1 6= p2;
G(p2) = F(p1);
G(x) = F(x) x 6∈ {p1, p2}.

Then

δ(F)− 4 ≤ δ(G) ≤ δ(F) + 4,

Nl(F)− 2 ≤ Nl(G) ≤ Nl(F) + 2.

94

A Method for Generation of High-Nonlinear S-Boxes Based on Gradient Descent

The nonlinearity function (Nl) of arbitrary vectorial function F is calculated
as follows

Nl(F) = 2n−1 − 1
2
·maxu 6=0,v∈F2n |λ(u, v)| .

We propose a new method to generate substitutions based on Proposition 1.
The algorithm takes as input a bijective vectorial Boolean function F : Fn

2 7→
Fn

2 with a minimum value of δ-uniformity, and number of values (NP) in
function, which have to be changed during the optimization of cryptographic
parameters.

The main steps of the algorithm are presented bellow.

1. Generate a substitution S based on F.

2. Swap NP values of S randomly and generate substitution St.

3. Test the S-box St for all criteria depending on their computational
complexity. If St satisfies all of them except the cyclic properties, then
go to step 3. Otherwise repeat step 2.

4. Apply equivalence (e.g. affine) to St in order to achieve the required
properties of cycle structure.

5. Output of the algorithm. Required substitution will be stored in St.

Theoretical obtaining of swap iterations’ number for arbitrary n-bit vectorial
function F becomes an additional topic for the research.

4. PR A C T I C A L RE S U LT S

Before the algorithm was designed practical opportunity of finding optimal
substitutions for n = 8 had been tested. The challenge was to find several
CCZ-nonequivalent substitutions with nonlinearity equal or greater than 100.
For practical realization a cluster with 4096 processors was used [12].

The program generated a random permutation and checked it for optimality.
After 12 hours of cluster operation it was found 27 optimal permutations,
four of which were CCZ-nonequivalent. An example of the permutation in
hexadecimal notation is given in Table 1.

95

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 1: An Example of Substitution with Nonlinearity 100

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 14 9D B9 E7 67 4C 50 82 CA E5 1D 31 0A C6 B2 51
1 A2 D8 54 90 D0 CE 2D 7D C7 7E D7 94 DF 83 8E 6C
2 66 D2 6F 16 1E 76 FE CC AA 5A 8F 17 BD 2C AC EA
3 7B 65 A9 10 C0 92 EE BE 6A 6E 48 96 95 E9 32 BC
4 A1 42 D5 A7 81 B4 5F E6 C2 5D AD 3A B7 0C 8D 01
5 98 FD 12 02 75 13 0F 6B 22 E2 AB F7 7F BA 97 D1
6 64 D9 C4 59 AF 23 33 37 DE AE 60 05 63 A8 52 A5
7 4E E0 DD 71 F2 24 34 57 47 A4 B3 9E 2F C1 B8 CB
8 2B D4 0D 36 91 8B 9C 26 25 61 A3 D6 EB 35 53 F4
9 2E 88 80 E4 30 DB FC 0E 77 8C 93 A6 78 06 E1 EC
A F9 03 A0 27 DA EF 5C 00 7A 45 E8 40 1A 4B 5E 73
B C3 FF F5 F3 B0 C5 49 21 FA 11 39 84 43 38 85 07
C F0 79 46 F8 E3 1F 09 B6 CD 55 1C 1B FB 7C ED 6D
D 15 56 86 20 68 4A 41 4F D3 99 08 F6 3F 89 62 04
E CF C8 69 9F 19 5B 44 9B 87 B1 3D BB DC 2A BF 58
F 3C 8A 18 3E 72 0B 28 4D B5 9A C9 74 29 F1 3B 70

This substitution has the following characteristics

• nonlinearity 100;

• absolute value of the autocorrelation 96;

• minimum algebraic degree 7;

• 8-uniform;

• algebraic immunity: a system of 441 equations of the 3rd degree.

Furthermore, search for substitution with nonlinearity 102 was conducted.
However, after 48 hours of cluster operation, which is approximately equal
to 22 years of a single-processor computer operation, no substitutions were
found. Thus, we can conclude that from a practical point of view, the genera-
tion of such permutations is computationally extremely difficult.

However, the algorithm described above allows to find such substitutions.
For example, consider the function F(x) = x−1. The value of NP equals 26
was experimentally found for n = 8 with providing the necessary properties
of the substitution. An example of such permutation is presented in Table 2.

96

A Method for Generation of High-Nonlinear S-Boxes Based on Gradient Descent

Table 2: An Example of Substitution with Nonlinearity 104

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 68 8D CA 4D 73 4B 4E 2A D4 52 26 B3 54 1E 19 1F
1 22 03 46 3D 2D 4A 53 83 13 8A B7 D5 25 79 F5 BD
2 58 2F 0D 02 ED 51 9E 11 F2 3E 55 5E D1 16 3C 66
3 70 5D F3 45 40 CC E8 94 56 08 CE 1A 3A D2 E1 DF
4 B5 38 6E 0E E5 F4 F9 86 E9 4F D6 85 23 CF 32 99
5 31 14 AE EE C8 48 D3 30 A1 92 41 B1 18 C4 2C 71
6 72 44 15 FD 37 BE 5F AA 9B 88 D8 AB 89 9C FA 60
7 EA BC 62 0C 24 A6 A8 EC 67 20 DB 7C 28 DD AC 5B
8 34 7E 10 F1 7B 8F 63 A0 05 9A 43 77 21 BF 27 09
9 C3 9F B6 D7 29 C2 EB C0 A4 8B 8C 1D FB FF C1 B2
A 97 2E F8 65 F6 75 07 04 49 33 E4 D9 B9 D0 42 C7
B 6C 90 00 8E 6F 50 01 C5 DA 47 3F CD 69 A2 E2 7A
C A7 C6 93 0F 0A 06 E6 2B 96 A3 1C AF 6A 12 84 39
D E7 B0 82 F7 FE 9D 87 5C 81 35 DE B4 A5 FC 80 EF
E CB BB 6B 76 BA 5A 7D 78 0B 95 E3 AD 74 98 3B 36
F 64 6D DC F0 59 A9 4C 17 7F 91 B8 C9 57 1B E0 61

It has the following properties

• nonlinearity 104;

• absolute value of the autocorrelation 80;

• minimum algebraic degree 7;

• 8-uniform;

• algebraic immunity: a system of 441 equations of the 3rd degree.

During 1 hour of cluster operations 1152 permutations with nonlinearity
104 were generated, that shows the effectiveness of the proposed method.

Additional tests have shown that for the nonlinearity greater than 104, the
substitutions are not optimal in terms of algebraic immunity. However, there
are permutations with nonlinearity 106 and algebraic immunity 2, in which
the number of equations is small (e.g. 2). Hereby, the question about existence
of substitutions with algebraic immunity 3 and nonlinearity more than 104
remains open.

97

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

5. CO N C L U S I O N S

The proposed method is based on the already known method of gradient
descent, but was adopted for vectorial case. It allows to find substitutions
with desired properties, in contrast to the previous one, which only could
find separate Boolean functions. Such substitutions can be used in modern
symmetric algorithms that demand high level of robustness against various
types of attacks.

RE F E R E N C E S

[1] Carlet, C.: Vectorial Boolean functions for cryptography. Boolean Mod-
els and Methods in Mathematics, Computer Science, and Engineering.
Cambridge University Press, 2010.

[2] Kazymyrov, O., Oliynykov, R.: An impact of S-box Boolean function
properties to strength of modern symmetric block ciphers. In Radiotech-
nics, vol. 166, pp. 11–16. Kharkiv National University of Radioelectronics,
2011. (In Russian).

[3] Rijmen, V.: Cryptanalysis and design of iterated block ciphers. Ph.D. thesis,
Katholieke Universiteit Leuven, Belgium, 1997.

[4] Kazymyrov, O., Oliynykov, R.: Application of vectorial Boolean func-
tions for substitutions generation used in symmetric cryptographic trans-
formations. In Information Processing Systems, vol. 6 (104), pp. 97–102. V.
N. Karazin Kharkov National University, Ukraine, 2012 (In Russian).

[5] Budaghyan, L., Kazymyrov, O.: Verification of restricted EA-
equivalence for vectorial Boolean functions. In Özbudak, F.,
Rodríguez-Henríquez, F. (eds.), Arithmetic of Finite Fields, vol. 7369 of
Lecture Notes in Computer Science, pp. 108–118. Springer Berlin Heidelberg,
2012.

[6] Tesař, P.: A new method for generating high non-linearity S-boxes. In
Radioengineering, vol. 19, pp. 23–26. Brno University of Technology, 2010.
http://www.radioeng.cz/fulltexts/2010/10_01_023_026.pdf.

[7] Izbenko, Y., Kovtun, V., Kuznetsov, A.: The design of Boolean
functions by modified hill climbing method. Cryptology ePrint Archive,
Report 2008/111, 2008. http://eprint.iacr.org/.

98

http://www.radioeng.cz/fulltexts/2010/10_01_023_026.pdf
http://eprint.iacr.org/

A Method for Generation of High-Nonlinear S-Boxes Based on Gradient Descent

[8] Millan, W., Clark, A., Dawson, E.: Boolean function design using
hill climbing methods. In Pieprzyk, J., Safavi-Naini, R., Seberry,
J. (eds.), Information Security and Privacy, vol. 1587 of Lecture Notes in
Computer Science, pp. 1–11. Springer Berlin Heidelberg, 1999.

[9] Daemen, J., Rijmen, V.: AES proposal: Rijndael. Electronic source, 1998.
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf.

[10] Logachev, O., Salnikov, A., Smyshlyaev, S., Yaschenko, V.:
Boolean functions in coding theory and cryptology. Moscow center for
continuous mathematical education, 2012. (In Russian).

[11] Yu, Y., Wang, M., Li, Y.: Constructing differential 4-uniform permuta-
tions from know ones. Cryptology ePrint Archive, Report 2011/047, 2011.
http://eprint.iacr.org/.

[12] NOTUR: Technical details of Hexagon. Electronic source, 2008. https:

//www.notur.no/hardware/hexagon.

99

http://eprint.iacr.org/
https://www.notur.no/hardware/hexagon
https://www.notur.no/hardware/hexagon

PAPER IV
algebraic aspects of the russian

hash standard gost r 34.11-2012 ∗

Oleksandr Kazymyrov Valentyna Kazymyrova

IV

∗Kazymyrov, O., Kazymyrova, V.: Algebraic aspects of the Russian hash standard GOST
R 34.11-2012. In Pre-proceedings of 2nd Workshop on Current Trends in Cryptology (CTCrypt 2013),
pp. 160–176, 2013.

101

Algebraic aspects of the Russian hash
standard GOST R 34.11-2012

Oleksandr Kazymyrov Valentyna Kazymyrova

University of Bergen, Norway
Oleksandr.Kazymyrov@ii.uib.no,

Valentyna.Kazymyrova@student.uib.no

Abstract

New GOST R 34.11-2012 standard has been recently selected by the
Russian government to replace the old one. The algorithm is based on the
hash function Stribog introduced in 2010. The high-level structure of the
new hash function is similar to GOST R 34.11-94 with minor modifications.
However, the compression function was changed significantly. Such a
choice of the compression algorithm has been motivated by the Rjndael
due to simplicity and understandable algebraic structure.

In this paper we consider a number of algebraic aspects of the GOST R
34.11. We show how one can express the cipher in AES-like form over the
finite field F28 , and consider some approaches that can be used for the
fast software implementation.

Keywords: hash function, Stribog, GOST R 34.11-2012, finite field.

1. IN T R O D U C T I O N

Until recently Russia has used a hash function defined by the standard GOST
R 34.11-94 [1, 2]. Latest cryptanalytical results show that the standard has
weaknesses from the theoretical point of view [3]. Therefore, the government
forced to create a new cryptographically strong hash function.

In 2010 at RusCrypto’10 conference a prototype of a perspective hash func-
tion also known as "Stribog" [4, 5] was presented. The new algorithm is based
on the modified Merkle-Damgård scheme with new compression function
and digest sizes of 256 and 512 bits. In 2012 the hash function was accepted
as the governmental standard GOST R 34.11-2012 [6–8]. It provides calcula-
tion procedure for any binary sequences used in cryptographic methods of
information processing including techniques for providing data integrity and

103

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

authenticity. This standard can be used for creation, operation and modern-
ization of information systems for different purposes. At the same time the
standard GOST R 34.10-2001 was replaced by the new one in 2012 taking into
account the new hash algorithm.

The description method of hashing algorithm differs from the AES [9, 10].
It is oriented on engineers and programmers without strong mathematical
background and is given in algorithm-like form [7]. Even the Stribog’s spec-
ification does not give information about algebraic features and properties
of basic operations. From the cryptanalytical point of view, it is necessary to
have an algebraic structure for being able to find weaknesses and/or prove
strengths of the algorithm.

In this paper we give a number of GOST R 34.11-2012 representations and
consider an approach that could be applied to find the AES-like form over a
finite field F28 .

2. DE S C R I P T I O N O F T H E GOST R 34.11-2012

Hereinafter we assume that Stribog and GOST R 34.11-2012 are the same
algorithms. GOST R 34.11-2012 specifies two iterative hash algorithms called
Stribog-256 and Stribog-512 that process output message digest of 256 and
512 bits respectively. These algorithms differ in the initialization vector value
and in the truncated message digest to 256 most significant bits (MSBs) in
Stibog-256 case. Moreover the standard defines two more transformation
that are addition modulo 2512 (�) and concatenation of two vectors A and B
(A||B). The value of IV equals 0512 (all zero bits) and (00000001)64 (64 bytes
of 0x01 each) for Stribog-512 and Stribog-256 respectively.

It should be noted that the byte ordering is not specified in the standard.
As in the previous standard bytes of information stored on a hard drive or
transmitted to a channel have little-endian notation. That is, the message
M2 = 0xFBE2E5 . . . E220E5D1 from Appendix 2.2 [7] is stored on the disk in
the from M2 = 0xD1E520E2 . . . E5E2FB. Moreover, decoding the last string
using the code page CP1251 (Windows-1251) gives a phrase from "The Tale
of Igor’s Campaign" [11]. Therefore, the description of the hash function is
given in the form provided in the standard. In real applications endianness
must be taking into account.

The hash algorithm consists of initialization, iterative and final stages.
Figure 1 depicts general iterative structure of the hashing algorithm.

104

Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012

N

IV

Σ
m1

�

�

512

g

m2

�

�

512

g

m3

�

�

512

gh h . . .

. . .

. . .

g g g gh h h

�

�

�

�

512 |M|

mt m

0 0

h

Stage 1 Stage 2 Stage 3

Σ = N = 0512

IV =

{
0, Stribog-512
(00000001)64, Stribog-256

t =
⌊
|M|
512

⌋ m = 0512−|M|||1||M

H =

{
h, Stribog-512
MSB256(h), Stribog-256

Fig. 1: Stage Dividing of GOST R 34.11-2012

At the initialization stage (stage 1) the variables Σ, N and h assign the
constant values 0, 0 and IV respectively. At the next stage, the input message

M = M′||mi divides into messages mi, 1 ≤ i ≤
⌊
|M|
512

⌋
, of length 512 bits.

Further, for each message mi the iterative procedure based on a compression
function gN(h, m) is applied. Finally, at the stage 3, consistent application of
gN with different parameters are made for the rest of the message M even if
|M| = 0.

The standard GOST R 34.11-2012 specifies three main transformations S
(SubBytes), P (Transposition) and L (MixColumns). These transformations
(see Figure 2) underlie the following compression function gN : F512

2 ×F512
2 7→

F512
2 , N ∈ F512

2

gN(h, m) = E(L ◦ P ◦ S(h⊕ N), m)⊕ h⊕m, h, m ∈ F512
2 .

The E function is a block cipher of the form

E(K, m) = X[K13] ◦
12

∏
i=1

(L ◦ P ◦ S ◦ X[Ki](m)) .

105

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

E

F

hi

⊕

⊕
hi−1 N mi

g

L

P

S

hi−1

N

Fig. 2: Compression Function of GOST R 34.11-2012

The round keys Ki are calculated using the key schedule procedure with
the following algorithm

Ki = L ◦ P ◦ S(Ki−1 ⊕ Ci−1), K1 = K, i ∈ {2, . . . , 13}.

In [5, 6] values of Ci are defined as the 512-bit constants (see Appendix A).
The X[Ki] operation is similar to AddRoundKey(Ki) of AES. The result of
X[Ki](A) is the bitwise XOR addition of round key Ki and input vector A.

As in AES the internal state of gN can be represented as a byte matrix.
However, in contrast to AES the Stribog’s matrix is 8 by 8 bytes. The corre-
spondence between the input vector B of 64 bytes and the state is presented
in Figure 3.

The S transformation is defined as the message partitioning into bytes
followed by non-linear bijective mapping of each byte using substitution
described in Appendix B. Clearly, the substitution of Stribog differs from
the AES one. The maximum absolute value of the bias and the difference
probability of the Stribog’s S-box equal 7

26 and 1
25 respectively. Other properties

are given in Appendix C.

The S transformation is the same as the SubBytes in AES and therefore has
the same correspondence between input and output states (Figure 4).

106

Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012

b7

b15

b23

b31

b39

b47

b55

b63

b6

b14

b22

b30

b38

b46

b54

b62

b5

b13

b21

b29

b37

b45

b53

b61

b4

b12

b20

b28

b36

b44

b52

b60

b3

b11

b19

b27

b35

b43

b51

b59

b2

b10

b18

b26

b34

b42

b50

b58

b1

b9

b17

b25

b33

b41

b49

b57

b0

b8

b16

b24

b32

b40

b48

b56

B = b63||b62|| . . . ||b0

Fig. 3: State Representation of Stribog

During the transformation P bits of the input message are grouped into
bytes and are permuted in accordance with the permutation τ

τ = {0, 8, 16, 24, 32, 40, 48, 56, 1, 9, 17, 25, 33, 41, 49, 57,

2, 10, 18, 26, 34, 42, 50, 58, 3, 11, 19, 27, 35, 43, 51, 59,

4, 12, 20, 28, 36, 44, 52, 60, 5, 13, 21, 29, 37, 45, 53, 61,

6, 14, 22, 30, 38, 46, 54, 62, 7, 15, 23, 31, 39, 47, 55, 63}.

The similar transformation in the AES is ShiftRows. However, P transposes
the matrix instead of shifting its rows (Figure 5).

The L transformation is based on a linear transformation l, which is given
by the right multiplication by a fixed 64×64 matrix over the field F2

B = A ·M,

a7

a15

a23

a31

a39

a47

a55

a63

a6

a14

a22

a30

a38

a46

a54

a62

a5

a13

a21

a29

a37

a45

a53

a61

a4

a12

a20

a28

a36

a44

a52

a60

a3

a11

a19

a27

a35

a43

a51

a59

a2

a10

a18

a26

a34

a42

a50

a58

a1

a9

a17

a25

a33

a41

a49

a57

a0

a8

a16

a24

a32

a40

a48

a56

a35

b7

b15

b23

b31

b39

b47

b55

b63

b6

b14

b22

b30

b38

b46

b54

b62

b5

b13

b21

b29

b37

b45

b53

b61

b4

b12

b20

b28

b36

b44

b52

b60

b3

b11

b19

b27

b35

b43

b51

b59

b2

b10

b18

b26

b34

b42

b50

b58

b1

b9

b17

b25

b33

b41

b49

b57

b0

b8

b16

b24

b32

b40

b48

b56

b35

Sbox

SubBytes

Fig. 4: The S (SubBytes) Transformation

107

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

a7

a15

a23

a31

a39

a47

a55

a63

a6

a14

a22

a30

a38

a46

a54

a62

a5

a13

a21

a29

a37

a45

a53

a61

a4

a12

a20

a28

a36

a44

a52

a60

a3

a11

a19

a27

a35

a43

a51

a59

a2

a10

a18

a26

a34

a42

a50

a58

a1

a9

a17

a25

a33

a41

a49

a57

a0

a8

a16

a24

a32

a40

a48

a56

a0a8a16a24a32a40a48a56

a1a9a17a25a33a41a49a57

a2a10a18a26a34a42a50a58

a3a11a19a27a35a43a51a59

a4a12a20a28a36a44a52a60

a5a13a21a29a37a45a53a61

a6a14a22a30a38a46a54a62

a7a15a23a31a39a47a55a63

Transpose

Fig. 5: The P (Transposition) Transformation

where A and B are input and output states respectively. Therefore, at the
first step of L an input message is converted to the 64-bit vectors. Next,
the transformation l applies for each vector (see Appendix D). At the last
step, vector values obtained at the previous step are joint into an output
message. Figure 6 depicts all these steps which are similar to the MixColumns
transformation of AES.

3. AES-L I K E RE P R E S E N TAT I O N O F GOST R 34.11-2012

The description of hash functions, given in the previous section, significantly
simplifies understanding of the principles underlying the algorithm compared
to one given in the standard GOST R 34.11-2012. However, it does not allow
to estimate the security aspects of the hashing algorithm. At the same time,

a7

a15

a23

a31

a39

a47

a55

a63

a6

a14

a22

a30

a38

a46

a54

a62

a5

a13

a21

a29

a37

a45

a53

a61

a4

a12

a20

a28

a36

a44

a52

a60

a3

a11

a19

a27

a35

a43

a51

a59

a2

a10

a18

a26

a34

a42

a50

a58

a1

a9

a17

a25

a33

a41

a49

a57

a0

a8

a16

a24

a32

a40

a48

a56a63 a62 a61 a60 a59 a58 a57 a56

b7

b15

b23

b31

b39

b47

b55

b63

b6

b14

b22

b30

b38

b46

b54

b62

b5

b13

b21

b29

b37

b45

b53

b61

b4

b12

b20

b28

b36

b44

b52

b60

b3

b11

b19

b27

b35

b43

b51

b59

b2

b10

b18

b26

b34

b42

b50

b58

b1

b9

b17

b25

b33

b41

b49

b57

b0

b8

b16

b24

b32

b40

b48

b56b63 b62 b61 b60 b59 b58 b57 b56

M

MixColumns

Fig. 6: The L (MixColumns) Transformation

108

Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012

the representation of gN in AES-like form gives the opportunity to use
mathematical tools that were created during last 15 years.

Since the state representations in the AES and Stribog are different, a reverse
transformation must be applied at the first step to an input message. Suppose
R is the transformation which return message with reversed bits. Obviously
that R−1 ◦ R(x) = R ◦ R(x) = x . Then the compression function of GOST R
34.11-2012 can be performed by following three steps

• reverse input bits;

• AES-like transformations;

• reverse output bits.

The connection between input and output bytes is shown in Figure 7.

B0, B1, . . . , B63 B
′
0, B

′
1, . . . , B

′
63

b0, b1, . . . , b511 b511, b510, . . . , b0
R

Fig. 7: Reverse Transformation

The reverse transformation leads to changing of S, P, L and X[K] transfor-
mations of the gN(h, m) function. Obviously, P and X[K] do not need changes
except applying R.

Since the S transformation is based on the constant substitution, applying
the function F′(x) = R ◦ F ◦ R(x), where F is the original S-box, to each byte
gives a substitution for AES-like form (Appendix B). It is easy to see that
vectorial Boolean functions F′ and F are affine equivalent, therefore they have
the same properties.

It is well-known that matrix multiplication over F28 has at least three forms

• representation over F2n ;

• representation over F2:

– using matrix;

– system of equations.

109

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

If a matrix is given over F2n , then it is easy to find a representation over F2 for
both system of equations and matrix forms. However, the reverse statement
in general is not true because of a large amount of possible irreducible
polynomials for large n. Nevertheless, for small fields all polynomials are
known. There are only 30 irreducible polynomials for n = 8 [12].

Let L : F2n 7→ F2n be a linear function of the form [13]

L(x) =
n−1

∑
i=0

δix2i
.

For δi = 0, 1 ≤ i < n, L becomes

L(x) = δx.

This means that any multiplication mapping F2n 7→ F2n is a linear transfor-
mation of a vector space over F2 for specified basis. In [13] was shown that
multiplication by arbitrary δ ∈ F28 can be represented as multiplication on a
matrix

δx =


k0,0 · · · k0,7
k1,0 · · · k1,7

...
. . .

...
k7,0 · · · k7,7

 ·


x0
x1
. . .
x7



where xi, k j,s ∈ F2. Using this representation any linear function L : F2n 7→
F2m can be converted to a matrix with the computation complexity O(n).
Further it was proven that vice versa transformation can be done with the
complexity of O(n3) field operations.

Thus, the algorithm of finding the matrix over F2n is as follows. For all
possible irreducible polynomials convert all n × n bits submatrices to an
element of the field and check MDS property of the resulting matrix.

110

Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012

The matrix over F28 with irreducible polynomial f (x) = x8 + x6 + x5 +
x4 + 1 received by the algorithm for Stribog is

M =



71 05 09 B9 61 A2 27 0E
04 88 5B B2 E4 36 5F 65
5F CB AD 0F BA 2C 04 A5
E5 01 54 BA 0F 11 2A 76
D4 81 1C FA 39 5E 15 24
05 71 5E 66 17 1C D0 02
2D F1 E7 28 55 A0 4C 9A
0E 02 F6 8A 15 9D 39 71


.

It should be noted that the binary matrix of Stribog additionally must be
transposed [14].

Therefore, the L transformation becomes equivalent to MixColumns of AES
and has the form

B = M · A.

Suppose EA, LA, PA, SA are AES-like transformations for E, L, P, S respec-
tively. Then it is easy to show (see Appendix E) that the modified gN(h, m)
takes the form depicted in Figure 8.

Since the calculation of block cipher E including key schedule procedure
takes most of the time, fast implementation of this part of the hash function is
needed for the maximum performance. The description in AES-like form gives
access to use tables for increasing performance. Obviously, all optimization
techniques described in [10] can be applied to the new standard. Various
implementations of the hash function are given in [15].

4. CO N C L U S I O N S

Whole standard has been written in algorithm way and oriented on end
developers. Shifting from functional and algorithmic description to logical
and mathematical, which is more familiar for cryptographic primitives, allows
us to estimate the security properties of Stribog. Our analysis shows that
the algorithm of gN(h, m) is a modified version of AES with block and key
lengths equal 512 bits. AES-like representation enables to prove resistant
of the hash function to different types of attacks based on differential and
linear cryptanalysis. Additionally, such a form shows that Stribog can be
implemented by using tables.

111

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

EA

FA

hi

⊕

⊕

hi−1 N mi

R R R

R

g

LA
PA
SA

hi−1
N

Fig. 8: The Modified Compression Function for AES-like Representation

RE F E R E N C E S

[1] GOST R 34.11-94: Information technology. Cryptographic data security.
Hashing function. Federal Agency on Technical Regulation and Metrology,
p. 16, 1994.

[2] Dolmatov, V.: GOST R 34.11-94: Hash Function Algorithm. RFC 5831
(Informational), March 2010. Updated by RFC 6986.

[3] Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M.,
Szmidt, J.: Cryptanalysis of the GOST hash function. In Wagner,
D. (ed.), Advances in Cryptology – CRYPTO 2008, vol. 5157 of Lecture Notes
in Computer Science, pp. 162–178. Springer Berlin Heidelberg, 2008.

[4] Matyukhin, D., Rudskoy, V., Shishkin, V.: A perspective hashing
algorithm. Materials of XII scientific conference RusCrypto’2010, 2010.
http://www.ruscrypto.ru/resource/summary/rc2010/ruscrypto_

2010_054.zip. (In Russian).

[5] GOST R 34.11-20__ (draft) revision 1: Information technology.
Cryptographic data security. Hash function. Electronic source, 2010. http:
//infotecs.ru/laws/gost/proj/gost3411.pdf. (In Russian).

112

http://www.ruscrypto.ru/resource/summary/rc2010/ruscrypto_2010_054.zip
http://www.ruscrypto.ru/resource/summary/rc2010/ruscrypto_2010_054.zip
http://infotecs.ru/laws/gost/proj/gost3411.pdf
http://infotecs.ru/laws/gost/proj/gost3411.pdf

Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012

[6] GOST R 34.11-2012: Information technology. Cryptographic data secu-
rity. Hash-function. Federal Agency on Technical Regulation and Metrology,
p. 24, 2013. (In Russian).

[7] GOST R 34.11-2012: Information technology. Cryptographic data secu-
rity. Hash-function. Federal Agency on Technical Regulation and Metrology,
p. 34, 2013.

[8] Dolmatov, V., Degtyarev, A.: GOST R 34.11-2012: Hash Function.
RFC 6986 (Informational), August 2013.

[9] Daemen, J., Rijmen, V.: AES proposal: Rijndael. Electronic source, 1998.
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf.

[10] FIPS PUB 197: Advanced Encryption Standard (AES). National Institute
of Standards and Technology, 2001.

[11] The tale of Igor’s campaign. Electronic source, 2014. http://en.

wikipedia.org/wiki/The_Tale_of_Igor%27s_Campaign.

[12] Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press,
Cambridge, 2nd edition, 1997.

[13] Budaghyan, L., Kazymyrov, O.: Verification of restricted EA-
equivalence for vectorial Boolean functions. In Özbudak, F.,
Rodríguez-Henríquez, F. (eds.), Arithmetic of Finite Fields, vol. 7369 of
Lecture Notes in Computer Science, pp. 108–118. Springer Berlin Heidelberg,
2012.

[14] Kazymyrov, O.: Source code of MDS matrices representations over
finite fields. GitHub repository, 2014. https://github.com/okazymyrov/
MDS.

[15] Kazymyrov, O., et al.: Source code of the cross-platform imple-
mentation of Stribog. GitHub repository, 2013. https://github.com/

okazymyrov/stribog.

113

http://en.wikipedia.org/wiki/The_Tale_of_Igor%27s_Campaign
http://en.wikipedia.org/wiki/The_Tale_of_Igor%27s_Campaign
https://github.com/okazymyrov/MDS
https://github.com/okazymyrov/MDS
https://github.com/okazymyrov/stribog
https://github.com/okazymyrov/stribog

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

A. CO N S TA N T S VA L U E S F O R KE Y SC H E D U L E

The standard GOST R 34.11-2012 specifies the following 12 constants

C1 =b1085bda1ecadae9ebcb2 f 81c0657c1 f 2 f 6a76432e45d016714eb88d7585c4 f c

4b7ce09192676901a2422a08a460d31505767436cc744d23dd806559 f 2a64507;

C2 =6 f a3b58aa99d2 f 1a4 f e39d460 f 70b5d7 f 3 f eea720a232b9861d55e0 f 16b50131

9ab5176b12d699585cb561c2db0aa7ca55dda21bd7cbcd56e679047021b19bb7;

C3 = f 574dcac2bce2 f c70a39 f c286a3d843506 f 15e5 f 529c1 f 8b f 2ea7514b1297b7b

d3e20 f e490359eb1c1c93a376062db09c2b6 f 443867adb31991e96 f 50aba0ab2;

C4 =e f 1 f d f b3e81566d2 f 948e1a05d71e4dd488e857e335c3c7d9d721cad685e353 f

a9d72c82ed03d675d8b71333935203be3453eaa193e837 f 1220cbebc84e3d12e;

C5 =4bea6bacad4747999a3 f 410c6ca923637 f 151c1 f 1686104a359e35d7800 f f f bd

b f cd1747253a f 5a3d f f f 00b723271a167a56a27ea9ea63 f 5601758 f d7c6c f e57;

C6 =ae4 f aeae1d3ad3d96 f a4c33b7a3039c02d66c4 f 95142a46c187 f 9ab49a f 08ec6

c f f aa6b71c9ab7b40a f 21 f 66c2bec6b6b f 71c57236904 f 35 f a68407a46647d6e;

C7 = f 4c70e16eeaac5ec51ac86 f eb f 240954399ec6c7e6b f 87c9d3473e33197a93c9

0992abc52d822c3706476983284a05043517454ca23c4a f 38886564d3a14d493;

C8 =9b1 f 5b424d93c9a703e7aa020c6e41414eb7 f 8719c36de1e89b4443b4ddbc49a

f 4892bcb929b069069d18d2bd1a5c42 f 36acc2355951a8d9a47 f 0dd4b f 02e71e;

C9 =378 f 5a541631229b944c9ad8ec165 f de3a7d3a1b258942243cd955b7e00d0984

800a440bdbb2ceb17b2b8a9aa6079c540e38dc92cb1 f 2a607261445183235adb;

C10 =abbedea680056 f 52382ae548b2e4 f 3 f 38941e71c f f 8a78db1 f f f e18a1b336103

9 f e76702a f 69334b7a1e6c303b7652 f 43698 f ad1153bb6c374b4c7 f b98459ced;

C11 =7bcd9ed0e f c889 f b3002c6cd635a f e94d8 f a6bbbebab07612001802114846679

8a1d71e f ea48b9cae f bacd1d7d476e98dea2594ac06 f d85d6bcaa4cd81 f 32d1b;

C12 =378ee767 f 11631bad21380b00449b17acda43c32bcd f 1d77 f 82012d430219 f 9b

5d80e f 9d1891cc86e71da4aa88e12852 f a f 417d5d9b21b9948bc924a f 11bd720.

114

Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012

The modified constants for AES-like representation are given below.

CA
1 =e0a2654 f 9aa601bbc4b22e336c2e6ea0a8cb0625105442458096e64989073ed23

f 23a1aeb11d728e680ba274c26e56 f 4 f 83ea60381 f 4d3d7975b53785bda108d;

CA
2 =edd98d840e209e676ab3d3ebd845bbaa53e550db4386ad3a1a996b48d6e8ad59

8c80ad68 f 07aab8619d4c4504e577 f c f ebad0e f 062b9c7 f 258 f 4b99551adc5 f 6;

CA
3 =4d505d50a f 6978998cdb5e61c22 f 6d4390db4606ec5c93838d79ac0927 f 047cb

dede948d28ae574 f d1 f 8394a f a7a8 f 60ac21bc56143 f 9c50e3 f 473d4353b2ea f ;

CA
4 =748bc7213d7d30448 f ec17c98557ca2c7dc04ac9ccc8ed1bae6bc0b74134eb95

f cac7a16b5384eb9be3c3acc7ea17112bb278eba0587129 f 4b66a817cd f b f 8 f 7;

CA
5 =ea7 f 363eb f 1ae806a f c657957e456a5e6858e4c4ed00 f f f bc5a f 5ca4e2e8b3 f d

bd f f f 001ebac79ac52086168 f 838a8 f ec6c495363082 f c5999e2e2b535d657d2;

CA
6 =76be26625e02165 f ac f 2096c4ea38e f d6d637d4366 f 84 f 502ded5938ed655 f f 3

63710 f 592d59 f e183625428a9 f 2366b4039c0c5edcc325 f 69bcb5cb87575 f 275;

CA
7 =c92b285cb26a6111c f 523c4532a2e8ac20a05214c196e260ec3441b4a3d54990

93c95e98cc7ce2cb93e1 f d67e363799c2a9024 f d7 f 61358a37a355776870e32 f ;

CA
8 =78e740 f d2bb0 f e259b158a9aac43356c f 423a58bd4b18b960960d949d3d4912 f

5923dbb2dc222d91787b6c398e1 f ed72828276304055e7c0e593c9b242da f 8d9;

CA
9 =db5ac4c18a22864e0654 f 8d3493b1c702a39e0655951d4de8d734ddbd0225001

2190b007edaa9b3c244291a4d85cbe5c7b f a68371b593229d9448c682a5a f 1ec;

CA
10 =b739a219d f e32d2ec36ddca88b5 f 196c2 f 4a6edc0c36785ed2cc96 f 540e6e7 f 9

c086ccd85187 f f f 8db1e51 f f 38e78291c f c f 274d12a7541c4a f 6a001657b7dd5;

CA
11 =d8b4c f 81b32553d6ba1b f 603529a457b1976e2beb8b35d f 7539d1257 f 78eb851

9e6621288401800486e0d5d7ddd65 f 1b297 f 5ac6b363400cd f 9113 f 70b79b3de;

CA
12 =04ebd88 f 52493d1299d84d9babe82 f 5 f 4a1487115525b8e761338918b9 f 701ba

d9 f 9840c2b48041 f eeb8 f b3d4c3c25b35e8d92200d01c84b5d8c688 f e6e771ec.

115

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

B. ST R I B O G ’S LO O K U P TA B L E S

The following two tables describe the substitutions for the original GOST R
34.11-2012 and AES-like representations. All values in the table have hexadec-
imal notation.

Table 1: Substitution Box of GOST R 34.11-2012

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 FC EE DD 11 CF 6E 31 16 FB C4 FA DA 23 C5 04 4D
1 E9 77 F0 DB 93 2E 99 BA 17 36 F1 BB 14 CD 5F C1
2 F9 18 65 5A E2 5C EF 21 81 1C 3C 42 8B 01 8E 4F
3 05 84 02 AE E3 6A 8F A0 06 0B ED 98 7F D4 D3 1F
4 EB 34 2C 51 EA C8 48 AB F2 2A 68 A2 FD 3A CE CC
5 B5 70 0E 56 08 0C 76 12 BF 72 13 47 9C B7 5D 87
6 15 A1 96 29 10 7B 9A C7 F3 91 78 6F 9D 9E B2 B1
7 32 75 19 3D FF 35 8A 7E 6D 54 C6 80 C3 BD 0D 57
8 DF F5 24 A9 3E A8 43 C9 D7 79 D6 F6 7C 22 B9 03
9 E0 0F EC DE 7A 94 B0 BC DC E8 28 50 4E 33 0A 4A
A A7 97 60 73 1E 00 62 44 1A B8 38 82 64 9F 26 41
B AD 45 46 92 27 5E 55 2F 8C A3 A5 7D 69 D5 95 3B
C 07 58 B3 40 86 AC 1D F7 30 37 6B E4 88 D9 E7 89
D E1 1B 83 49 4C 3F F8 FE 8D 53 AA 90 CA D8 85 61
E 20 71 67 A4 2D 2B 09 5B CB 9B 25 D0 BE E5 6C 52
F 59 A6 74 D2 E6 F4 B4 C0 D1 66 AF C2 39 4B 63 B6

Table 2: Substitution Box of GOST R 34.11-2012 for AES-like form

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 3F FB D7 E0 9F E5 A8 04 97 07 AD 87 A0 B5 4C 9A
1 DF EB 4F 0C 81 58 CF D3 E8 3B FD B1 60 31 B6 8B
2 F3 7C 57 61 47 78 08 B4 C9 5E 10 32 C7 E4 FF 67
3 C4 3E BF 11 D1 26 B9 7D 28 72 39 53 FE 96 C3 9C
4 BB 24 34 CD A6 06 69 E6 0F 37 70 C1 40 62 98 2E
5 5F 6B 16 D6 3C 1C 1E A4 8F 14 C8 55 B7 A5 63 F5
6 8C C2 12 B8 F7 46 59 90 99 0D 6E 1F F1 AA 51 2D
7 20 9D 73 E7 71 64 4D 36 FA 50 BA A1 CB A9 B0 C6
8 77 AF 2C 1A 18 E9 85 8E EE F0 0E D8 21 A2 AE 65
9 23 9E 54 EC 38 1D 89 D9 6C 17 4E CA D0 C5 2A 66
A 76 15 13 35 3A 00 DE D4 74 29 30 FC 56 7A AC 2F
B A3 44 5C 9B 80 F9 79 A7 B3 CC ED 1B 2B AB BD D2
C 88 95 8A 02 5A CE 94 25 DB 7B 6A 92 75 49 BC 4B
D 5B 6F 45 27 42 41 F6 0B DD 0A E2 09 19 BE 01 43
E 68 93 D5 EF 84 22 E3 DA 5D 3D 48 7F 05 F4 7E 03
F B2 C0 33 91 F2 82 8D 4A 83 52 E1 86 F8 DC EA 6D

116

Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012

C. S-B O X PR O P E RT I E S O F GOST R 34.11-2012

The comparison of Stribog and the AES substitutions is given in the following
table. All properties presented in Table 3 were calculated according to the
componet functions, which are the linear combinations (with non all-zero
coeffcients) of the coordinate functions [13].

Table 3: Comparison of Stribog and AES Substitutions

Properties Stribog AES
Vectorial Boolean Function

Balancedness True True
Nonlinearity 100 112

Absolute Indicator 96 32
Sum-of-squares Indicator 258688 133120

Propogation Criterion 0 0
Correlation Immunity 0 0

Minimum of Algebraic Degree 7 7
Resiliency 0 0

Strict Avalanche Criterion False False
Properties Stribog AES

Substitution
Bijection True True

Maximum of Differential Table 8 4
Maximum of Approximation Table 28 16

Cycles Structure 252:243, 46:13
43:27, 242:87,

99:59, 124:81, 143:2
Algebraic Immunity 3(441) 2(39)

D. TH E CO N S TA N T MAT R I X F O R T H E l
TR A N S F O R M AT I O N

The constant matrix is given in Table 4. Each value in the cell has hex-
adecimal notation and corresponds to a matrix row with index i · 4 + j,
i = {0, . . . , 15}, j = {0, . . . , 3}. For example, the row 21 = 5 · 4 + 1 is
8a174a9ec8121e5d.

117

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 4: The Constant Matrix of the Standard GOST R 34.11-2012

i
j

0 1 2 3

0 8e20faa72ba0b470 47107ddd9b505a38 ad08b0e0c3282d1c d8045870ef14980e
1 6c022c38f90a4c07 3601161cf205268d 1b8e0b0e798c13c8 83478b07b2468764
2 a011d380818e8f40 5086e740ce47c920 2843fd2067adea10 14aff010bdd87508
3 0ad97808d06cb404 05e23c0468365a02 8c711e02341b2d01 46b60f011a83988e
4 90dab52a387ae76f 486dd4151c3dfdb9 24b86a840e90f0d2 125c354207487869
5 092e94218d243cba 8a174a9ec8121e5d 4585254f64090fa0 accc9ca9328a8950
6 9d4df05d5f661451 c0a878a0a1330aa6 60543c50de970553 302a1e286fc58ca7
7 18150f14b9ec46dd 0c84890ad27623e0 0642ca05693b9f70 0321658cba93c138
8 86275df09ce8aaa8 439da0784e745554 afc0503c273aa42a d960281e9d1d5215
9 e230140fc0802984 71180a8960409a42 b60c05ca30204d21 5b068c651810a89e
A 456c34887a3805b9 ac361a443d1c8cd2 561b0d22900e4669 2b838811480723ba
B 9bcf4486248d9f5d c3e9224312c8c1a0 effa11af0964ee50 f97d86d98a327728
C e4fa2054a80b329c 727d102a548b194e 39b008152acb8227 9258048415eb419d
D 492c024284fbaec0 aa16012142f35760 550b8e9e21f7a530 a48b474f9ef5dc18
E 70a6a56e2440598e 3853dc371220a247 1ca76e95091051ad 0edd37c48a08a6d8
F 07e095624504536c 8d70c431ac02a736 c83862965601dd1b 641c314b2b8ee083

E. TH E PR O O F O F AES-L I K E RE P R E S E N TAT I O N O F
gN(h, m)

Taking into account all statements for L, P, S functions from Section 3, the
modified E (EA) takes the form

EA(K, m) =
(

R ◦ X[KA
13] ◦ R

)
◦

12

∏
i=2

((
R ◦ LA ◦ R

)
◦
(

R ◦ PA ◦ R
)
◦

◦
(

R ◦ SA ◦ R
)
◦
(

R ◦ X[KA
i] ◦ R

))
◦
((

R ◦ LA ◦ R
)
◦

◦
(

R ◦ PA ◦ R
)
◦
(

R ◦ SA ◦ R
)
◦
(

R ◦ X[KA
1] ◦ R(m)

))
= R ◦ X[KA

13]◦

◦
12

∏
i=2

(
LA ◦ PA ◦ SA ◦ (X[KA

i]
)
◦
(

LA ◦ PA ◦ SA ◦ X[KA
1] ◦ R(m)

)
.

In fact, the message m is reversed at previous steps before calling the
function gN(h, m). The final R is applied for the result of gN(h, m). Thus, the

118

Algebraic Aspects of the Russian Hash Standard GOST R 34.11-2012

final algorithm of EA has the form

EA(K, m) = X[KA
13] ◦

12

∏
i=1

(
LA ◦ PA ◦ SA ◦ X[KA

i](m)
)

.

The round keys KA
i are calculated using received constants CA

i (see. Ap-
pendix A)

KA
i = LA ◦ PA ◦ SA(KA

i−1 ⊕ CA
i−1), KA

1 = KA, i ∈ {2, . . . , 13}.

All of the above lead to the modification of the whole function gN(h, m)
(Figure 8)

KA = LA ◦ PA ◦ SA(R(h)⊕ R(N))

gN(h, m) = R ◦
(

E(KA, R(m))⊕ R(h)⊕ R(m)
)

.

119

PAPER V
extended criterion for absence of

fixed points
∗

Oleksandr Kazymyrov Valentyna Kazymyrova

V

∗Kazymyrov, O., Kazymyrova, V.: Extended criterion for absence of fixed points. In
Pre-proceedings of 2nd Workshop on Current Trends in Cryptology (CTCrypt 2013), pp. 177–191, 2013.

121

Extended Criterion for Absence of Fixed
Points

Oleksandr Kazymyrov Valentyna Kazymyrova

University of Bergen, Norway
Oleksandr.Kazymyrov@ii.uib.no,

Valentyna.Kazymyrova@student.uib.no

Abstract

One of the criteria for substitutions used in block ciphers is the absence
of fixed points. In this paper we show that this criterion must be extended
taking into consideration a mixing key function. In practice, we give
a description of AES when fixed points are reached. Additionally, it is
shown that modulo addition has more advantages then XOR operation.

Keywords: S-box, Block Cipher, Fixed Point, AES.

1. IN T R O D U C T I O N

Substitution boxes (S-boxes) map an n-bit input message to an m-bit output
message. They provide confusion in symmetric algorithms. For different
tasks S-boxes are used in various forms. In stream ciphers a substitution is
represented usually as a vectorial Boolean function [1]. Permutations are a
subclass of substitutions and are commonly used in block ciphers as lookup
tables. Regardless of ciphers an S-box can be converted from one form to
another one.

Substitutions must satisfy various criteria for providing high level of protec-
tion against different types of attacks [2]. A substitution satisfying all criteria
is perfect. However, such substitutions do not exist up to date. Therefore, in
practice, substitutions satisfying several important criteria are used. They are
called optimal S-boxes. Optimality criteria vary from cipher to cipher. Gener-
ating permutations with optimal criteria is a quite difficult task, especially
for a large n and m. The problem of generating a set of S-boxes with similar
properties can be particularly solved by using EA- or CCZ-equivalence [3, 4].

123

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

One of criteria is absence of fixed points. It is used in many ciphers for
increasing resistance against statistical attacks [5]. Designers of modern cryp-
tographic primitives try to get rid of the fixed points. This is achieved by
applying affine equivalence, which is a special case of EA-equivalence. The
S-box of advanced encryption standard (AES) was constructed using this
technique [5, 6]. However, the application of this method does not totally
prevent the appearance of fixed points. In this paper we show an isomorphic
(equivalent) form of AES when fixed points are reached.

Two ciphers Ei and Ej are isomorphic to each other if there exist invertible
maps φ : xi 7→ xj, ψ : yi 7→ yj and χ : ki 7→ kj such that yi = Ei(xi, ki) and
yj = Ej(xj, kj) are equal for all xi, ki, xj and kj [7, 8]. Obviously, the cipher
can have a lot of isomorphic basic transformations as well as full encryption
procedures. The cipher BES is a well-known example of isomorphic AES
[9]. Another example of isomorphic AES is the description of encryption
procedure using system of equation of degree 2 [10]. We give one more
description of AES which includes a substitution with a fixed point while
almost all transformations are unmodified.

2. PR E L I M I N A R I E S

Arbitrary substitution can be represented at least in three different forms:
algebraic normal form (ANF), over field F2n and as a lookup table. Most of
substitutions used in block ciphers have a table representation because of
simplicity of description and understanding [11]. Meanwhile arbitrary S-box
S can be always associated with a vectorial Boolean function F in F2n [x]. If a
substitution is a permutation then F is defined uniquely [1].

The natural way of representing F as a function from Fn
2 to Fm

2 is by its
algebraic normal form:

∑
I⊆{1,...,n}

aI

(
∏
i∈I

xi

)
, aI ∈ Fm

2 ,

the sum is being calculated in Fm
2 [1]. The algebraic degree of F is the degree

of its ANF. F is called affine if it has algebraic degree at most 1 and it is called
linear if it is affine and F(0) = 0. A vectorial Boolean function given in table
representation can be easily transformed to ANF form and vice versa.

124

Extended Criterion for Absence of Fixed Points

Two functions F, G : Fn
2 7→ Fm

2 are called extended affine equivalent (EA-
equivalent) if there exist an affine permutation A1 of Fm

2 , an affine permutation
A2 of Fn

2 and a linear function L3 from Fn
2 to Fm

2 such that

F(x) = A1 ◦ G ◦ A2(x) + L3(x). (1)

Clearly, A1 and A2 can be presented as A1(x) = L1(x) + c1 and A2(x) =
L2(x) + c2 for some linear permutations L1 and L2 and some c1 ∈ Fm

2 , c2 ∈
Fn

2 . Two functions F and G are linear equivalent if equation (1) is hold for
L3(x) = 0, c1 = 0, c2 = 0. If the equation (1) is preserved only for L3(x) = 0,
then functions F and G are called affine equivalent [12].

In matrix form EA-equivalence is represented as follows

F(x) = M1 · G(M2 · x⊕V2)⊕M3 · x⊕V1

where elements of {M1, M2, M3, V1, V2} have dimensions {m×m, n× n, m×
n, m, n} [3].

An element a ∈ Fn
2 is a fixed point of F : Fn

2 7→ Fm
2 if F(a) = a. The absence

of fixed points criterion is defined as follows.

Proposition 1. A substitution must not have fixed points, i.e.

F(a) 6= a, ∀a ∈ Fn
2 .

For any positive integers n and m, a function F from Fn
2 to Fm

2 is called dif-
ferentially δ-uniform if for every a ∈ Fn

2 \ {0} and every b ∈ Fm
2 , the equation

F(x) + F(x + a) = b admits at most δ solutions [1]. Vectorial Boolean func-
tions used as S-boxes in block ciphers must have low differential uniformity
to allow high resistance to differential cryptanalysis [13].

The nonlinearity criterion is closely connected to the notion of Walsh
transform which can be described as the function

λ(u, v) = ∑
x∈Fn

2

(−1)v·F(x)+u·x,

where "·" denotes inner products in Fn
2 and Fm

2 respectively [1]. A substitution
has an optimal resistance to linear cryptanalysis if the maximum absolute
value of Walsh coefficients is small [14]. Substitutions with the smallest value
of λ(u, v) exist for odd n only.

These two criteria are major while selecting substitutions for new ciphers.
However, there are many others criteria like propagation criterion, absolute

125

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

indicator, correlation immunity, strict avalanche criterion, etc [1, 2, 15]. It has
been still not proven the importance of the criteria for block ciphers. For
example, the substitution used in AES does not satisfy most of them [16].
Moreover, no theoretical or practical attacks were proposed on modern block
ciphers based on these criteria.

Let E : {0, 1}l × {0, 1}k 7→ {0, 1}l be a function taking a key K of length
k bits and input message (plaintext) M of length l bits and return output
message (ciphertext) E(M, K). For each key K let EK : {0, 1}l 7→ {0, 1}l be a
function defined by EK(M) = E(M, K). Then E is a block cipher if EK and
E−1

K are efficiently computable and EK is a permutation for every K.
Most of the modern block ciphers are iterative (Fig. 1). Usually a round

function is run multiple times with different parameters (round keys). An
arbitrary iterative block cipher can be mathematically described as follows

EK(M) = PWkr+1 ◦
r

∏
i=2

(Rki
) ◦ IWk1(M),

where R is a round procedure, IW is a prewhitening procedure and PW is a
postwhitening procedure. In Fig. 1 a key schedule is an algorithm that takes a
master key K as input and produces the subkeys k1, k2, . . . , kr+1 for all stages
of encryption algorithm.

A mixing key procedure of a block cipher is an algorithm which injects
a round key into an encryption procedure. In the majority of the modern
block ciphers, the mixing key function is implemented as exclusive or (XOR)
operation because of low-cost implementations.

3. A BR I E F DE S C R I P T I O N O F AES

AES is a substitution permutation network (SPN) block cipher that supports
a fixed block size of 128 bits and a key size of 128, 192 or 256 bits [6]. The
number of rounds depends on the key size and is equal to 10, 12 or 14,
respectively. The round function consists of four functions: AddRoundKey
(σk), SubBytes (γ), ShiftRows (π) and MixColumns (θ).

The entire encryption algorithm is described as follows (Fig. 2)

EK(M) = σkr+1 ◦ π ◦ γ ◦
r

∏
i=2

(σki
◦ θ ◦ π ◦ γ) ◦ σk1(M).

126

Extended Criterion for Absence of Fixed Points

Fig. 1: General Structure of An Iterative Block Cipher

The SubBytes transformation processes the state of the cipher using a
nonÂlinear byte substitution table that operates on each of the state bytes
independently [6]. The S-box of AES was generated by finding the inverse
element in the field F28 followed by applying affine polynomial. In terms of
equation (1) the transformation has the form

F(x) = A1(x−1) = L1(x−1) + c1.

The substitution table generated by vectorial Boolean function F : F28 7→
F28 satisfies the following criteria

• the maximum value of non-trivial XOR difference transformation prob-
ability is 2−6;

• the maximum absolute value of linear approximation probability bias is
2−4;

• the minimum algebraic degree of the component functions is 7 [5, 17].

127

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Fig. 2: Encryption Algorithm of AES

It should be noticed that the chosen polynomial x−1 allows to describe the S-
box and the entire cipher by overdefined system of equations of degree 2 [18].
But in the same time it gives resistant to differential, linear and many other
cryptanalytical methods. In addition to the general properties, the constant of
the AES S-box has been chosen in such way that it has no fixed points [5].

The MixColumns transformation takes all the columns of the state and
mixes their data (independently of one another) to produce new columns [6].
This transformation can be represented in different ways. One of them is the
matrix multiplication. For an input state x and 4× 4 matrix M the output
state y of the transformation is described as

y = M · x.

The matrix with maximum distance separable (MDS) property is used in
AES. In terms of Rijndael the MDS property associates with a branch number
(β)

β = min
x 6=0

(W(x) + W(y)),

128

Extended Criterion for Absence of Fixed Points

where W(z) is the byte weight of a vector z.
From the definition of MDS matrix, it is known that the maximum differen-

tial branch number of m by m matrix is m + 1 [11, 19]. Hence, MDS matrices
have the perfect diffusion property for byte-oriented ciphers.

Multiplication in a field F2n is a linear transformation with respect to XOR,
so it preserves the linear property [9]

θ(x + y) = θ(y) + θ(y).

The ShiftRows transformation processes the state by cyclically shifting the
last three rows of the state by different offsets [6]. More precisely, row i is
moved to the left by i byte positions for 0 ≤ i ≤ 3. The ShiftRows is also a
linear function that preserves π(x + y) = π(y) + π(y) property.

Both MixColumns and ShiftRows transformations help to ensure that the
number of active S-boxes is large even after few rounds [5]. These functions
are the basis of protection offered by the AES against differential and linear
cryptanalysis.

AddRoundKey transformation is the mixing key function in which a round
key is added to the state using XOR operation. The length of a round key is
equal to the size of the state. XOR operation of two n-bit length vectors a and
b can be performed bit by bit n times. Therefore, AddRoundKey operation of
AES can be done independently of each byte.

4. A NE W C I P H E R IS O M O R P H I C TO AES

There exist several examples of ciphers isomorphic to AES. For example, the
big encryption system (BES) describes AES over F28 [9]. On the other hand,
the cipher AES can be also represented as the system of multivariate equations
of the 2nd degree over F2 [18]. These two examples are based on the algebraic
features of the substitution. However, there is another approach based on
linear properties of the basic functions (MixColumns and ShiftRows).

The cipher AES is based on Rijndael that was proposed by Daemen and
Rijmen to AES process [20]. Authors have used design simplicity principle,
which led to performance improvement and code compactness properties
of the cipher on a wide range of platforms. For increasing decryption per-
formance of software implementation they have used precomputed lookup
tables and the linear properties of the basic functions.

129

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

(a) Original (b) Algorithm for the Fast Software Implementa-
tion

Fig. 3: Decryption Algorithm of AES

The original decryption algorithm for arbitrary ciphertext C mathematically
can be represented as follows (Fig. 3a) [6]

DK(C) = σk1 ◦ γ−1 ◦ π−1 ◦
r

∏
i=2

(θ−1 ◦ σkr−i+2
◦ γ−1 ◦ π−1) ◦ σkr+1(C).

For using precomputed tables it is necessary to transform the decryption
round function to the similar one of encryption algorithm. Since functions γ−1

and π−1 are computed independently they have the commutative property
γ−1 ◦ π−1 = π−1 ◦ γ−1 [5, 9]. In Section 3 it was stated that functions θ−1

and σ are linear w.r.t. XOR, hence

θ−1 ◦ σkr−i+2
= σθ−1(kr−i+2)

◦ θ−1

Thus, the whole decryption algorithm has the form (Fig. 3b)

DK(C) = σk1 ◦ π−1 ◦ γ−1 ◦
r

∏
i=2

(σθ−1(kr−i+2)
◦ θ−1 ◦ π−1 ◦ γ−1) ◦ σkr+1(C).

130

Extended Criterion for Absence of Fixed Points

(a) Modified Encryption Algorithm (b) Isomorphic Encryption Algorithm with a
Fixed Point

Fig. 4: Isomorphism of AES

Usage of such elementary transformations helps to achieve a significant
acceleration of the decryption procedure due to the isomorphic properties of
the basic functions [5].

Obviously, the same technique can be applied to the encryption algorithm.
However, the task is to find a representation of the cipher in which properties
of a new substitution will differ from the original one. For simplicity of
description, let us assume that the round keys are independent of each other.
Then the encryption procedure takes a form (Fig. 4a)

EK(M) = π ◦ σπ−1(kr+1)
◦ γ ◦

r

∏
i=2

(θ ◦ π ◦ σπ−1◦θ−1(ki)
◦ γ) ◦ σk1(M).

The last equation shows that the final ShiftRows operation is redundant in
terms of resistance to attacks. As it was stated above the availability of this
function is necessary for fast implementation of the decryption procedure.

131

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Arbitrary permutation S can be represented as a vectorial Boolean function
F : F2n 7→ F2n which has the form [3]

F(x) = F′(x) + F(0).

Since the characteristic of the field is 2, the constant can be moved to the
round keys. Let ξ be a function in which the constant F(0) is XORed with
all bytes of a state. If the round keys π−1 ◦ θ−1 ◦ ξ(ki) are denoted by k′i then
encryption procedure takes the form (Fig. 4b)

EK(M) = π ◦ σπ−1◦ξ(kr+1)
◦ γ′ ◦

r

∏
i=2

(θ ◦ π ◦ σk′i
◦ γ′) ◦ σk1(M),

where γ′ is the SubBytes function which consists of the substitution of the
form F(x) = L(x−1).

Fig. 4b shows that the structure of the cipher remains unchanged. Clearly,
if an adversary finds a round key for modified cipher she also automatically
obtains corresponding round key of the original cipher because of the linear
dependence of the keys ki and k′i. However, the new substitution F(x) =
L(x−1) has the fixed point in x = 0. Consequently, the substitution of AES
doesn’t satisfy the absence of fixed points criterion.

Described features of the cipher appears from the fact that the operation
XOR is linear with respect to MixColumns and ShiftRows. If one replaces
AddRoundKey with some nonlinear function (i.e. based on addition modulo
2n), then it will be impossible to find an isomorphic cipher of such a form.
From this point of view a mixed key function based on modulo addition is
cryptographically stronger than a function based on XOR operation .

Furthermore, fixed points are directly connected with cyclic properties of
substitutions. Inserting an invertible linear function (τ) into the encryption
procedure gives a new isomorphic cipher (Fig. 5a). Herewith, the linearized
polynomial can be added to the round key and the inverse function can be
a part of the new substitution (Fig. 5b). The cyclic properties of the new
substitution will depend on the selected function τ.

Thereby, the cyclic and the absence of fixed points properties of a substitu-
tion can be controlled by adversary in the case of a linear mixing key function.
Thus, a new criterion for substitutions follows from the description above.

Proposition 2. Substitutions S1, S2, . . ., Sn used in a confusion layer must belong
to different classes of equivalence.

132

Extended Criterion for Absence of Fixed Points

(a) Initial Cipher (b) Isomorphic Cipher

Fig. 5: Modified AES with an Invertible Linear Function

Clearly, if substitutions are in the same class (i.e. EA-equivalent) then the
adversary can find an isomorphic cipher which consists of one substitution
and modified linear layer. Consequently, there will be no advantages to use
multiple substitutions. The criterion has to be considered both in the design
of new ciphers and in the analysis of existing ones [21, 22]. Since CCZ-
equivalence is the most general case of known equivalence, it makes sense to
check whether substitutions belong to different CCZ-equivalence classes.

5. CO N C L U S I O N S

It was shown that the absence of fixed points criterion works only in case if
S-box is considered as a separate function. There are isomorphic representa-
tions of ciphers in which this criterion is not met. The new method of AES

133

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

description allows to reconsider some of criteria for substitutions from the
practical point of view. This may lead to a weakening of the cipher strength.

Since an invertible linear function can be added to encryption procedure,
the adversary can control both the cyclic and absence of fixed points properties
of substitutions. It was shown that mixing key function based on modulo
addition is more resistant with respect to the absence of fixed points criterion
than function based on XOR operation.

Isomorphism of ciphers adds additional restrictions on using multiple
substitutions. The proposed criterion can be used to reduce the probability of
finding the weakest one.

RE F E R E N C E S

[1] Carlet, C.: Vectorial Boolean functions for cryptography. Boolean Mod-
els and Methods in Mathematics, Computer Science, and Engineering.
Cambridge University Press, 2010.

[2] Rijmen, V.: Cryptanalysis and design of iterated block ciphers. Ph.D. thesis,
Katholieke Universiteit Leuven, Belgium, 1997.

[3] Budaghyan, L., Kazymyrov, O.: Verification of restricted EA-
equivalence for vectorial Boolean functions. In Özbudak, F.,
Rodríguez-Henríquez, F. (eds.), Arithmetic of Finite Fields, vol. 7369 of
Lecture Notes in Computer Science, pp. 108–118. Springer Berlin Heidelberg,
2012.

[4] Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and
permutations suitable for DES-like cryptosystems. In Designs, Codes and
Cryptography, vol. 15, pp. 125–156. Kluwer Academic Publishers, 1998.

[5] Daemen, J., Rijmen, V.: AES proposal: Rijndael. Electronic source, 1998.
http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf.

[6] FIPS PUB 197: Advanced Encryption Standard (AES). National Institute
of Standards and Technology, 2001.

[7] Rostovtsev, A.: Changing probabilities of differentials and linear sums
via isomorphisms of ciphers. Cryptology ePrint Archive, Report 2009/117,
2009. http://eprint.iacr.org/.

134

http://eprint.iacr.org/

Extended Criterion for Absence of Fixed Points

[8] Rimoldi, A.: On algebraic and statistical properties of AES-like ciphers.
Ph.D. thesis, University of Trento, Italy, 2010.

[9] Murphy, S., Robshaw, M.: Essential algebraic structure within the AES.
In Yung, M. (ed.), Advances in Cryptology — CRYPTO 2002, vol. 2442 of
Lecture Notes in Computer Science, pp. 1–16. Springer Berlin Heidelberg,
2002.

[10] Bard, G. V.: Algebraic cryptanalysis. Springer, 2009.

[11] Knudsen, L. R., Robshaw, M.: The block cipher companion. Information
Security and Cryptography. Springer Berlin Heidelberg, 2011.

[12] Budaghyan, L., Carlet, C., Pott, A.: New classes of almost bent
and almost perfect nonlinear polynomials. In Information Theory, IEEE
Transactions, vol. 52, pp. 1141–1152. Institute of Electrical and Electronics
Engineers, 2006.

[13] Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryp-
tosystems. In Menezes, A., Vanstone, S. (eds.), Advances in Cryptology-
CRYPT0’90, vol. 537 of Lecture Notes in Computer Science, pp. 2–21.
Springer Berlin Heidelberg, 1991.

[14] Matsui, M.: Linear cryptanalysis method for DES cipher. In Helle-
seth, T. (ed.), Advances in Cryptology — EUROCRYPT ’93, vol. 765 of
Lecture Notes in Computer Science, pp. 386–397. Springer Berlin Heidelberg,
1994.

[15] Burnett, L.: Heuristic optimization of Boolean functions and substitution
boxes for cryptography. Ph.D. thesis, Queensland University of Technology,
Australia, 2005.

[16] Kazymyrov, O., Kazymyrova, V.: Algebraic aspects of the Russian
hash standard GOST R 34.11-2012. In Pre-proceedings of 2nd Workshop on
Current Trends in Cryptology (CTCrypt 2013), pp. 160–176, 2013.

[17] Nyberg, K.: Perfect nonlinear S-boxes. In Davies, D. (ed.), Advances in
Cryptology - EUROCRYPT’91, vol. 547 of Lecture Notes in Computer Science,
pp. 378–386. Springer Berlin Heidelberg, 1991.

[18] Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overde-
fined systems of equations. Cryptology ePrint Archive, Report 2002/044,
2002. http://eprint.iacr.org/.

135

http://eprint.iacr.org/

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

[19] Ailan, W., Yunqiang, L., Xiaoyong, Z.: Analysis of corresponding
structure of differential branch of MDS matrixes on finite field. In
Intelligent Networks and Intelligent Systems (ICINIS), 2010 3rd International
Conference, pp. 381–384. Institute of Electrical and Electronics Engineers,
2010.

[20] Nechvatal, J., et al.: Report on the development of the Advanced
Encryption Standard (AES). Electronic source, 2000. http://csrc.nist.
gov/archive/aes/round2/r2report.pdf.

[21] Kwon, D., Kim, J., Park, S., Sung, S., et al.: New block cipher: ARIA.
In Lim, J.-I., Lee, D.-H. (eds.), Information Security and Cryptology - ICISC
2003, vol. 2971 of Lecture Notes in Computer Science, pp. 432–445. Springer
Berlin Heidelberg, 2004.

[22] Oliynykov, R., Gorbenko, I., Dolgov, V., Ruzhentsev, V.: Results
of Ukrainian national public cryptographic competition. In Tatra Moun-
tains Mathematical Publications, vol. 47, pp. 99–113. Mathematical Institute
of Slovak Academy of Sciences, 2010.

136

http://csrc.nist.gov/archive/aes/round2/r2report.pdf
http://csrc.nist.gov/archive/aes/round2/r2report.pdf

PAPER VI
state space cryptanalysis of the

mickey cipher
∗

Tor Helleseth Cees J.A. Jansen Oleksandr Kazymyrov
Alexander Kholosha

VI∗Helleseth, T., Jansen, C.J.A., Kazymyrov, O., Kholosha, A.: State space crypt-
analysis of the MICKEY cipher. In Information Theory and Applications Workshop (ITA), pp. 1–10.
Institute of Electrical and Electronics Engineers (IEEE), 2013.

137

State Space Cryptanalysis of The MICKEY
Cipher

Tor Helleseth† Cees J.A. Jansen‡

Oleksandr Kazymyrov† Alexander Kholosha†

† The Selmer Center, Department of Informatics
University of Bergen, Norway

{Tor.Helleseth, Oleksandr.Kazymyrov, Alexander.Kholosha}@ii.uib.no
‡ Riebeeckstraat 10, 5684ej Best, The Netherlands

deltacrypto@onsmail.nl

Abstract

In this paper, we consider the key-stream generator MICKEY, whose
internal state splits into two parts that are updated both linearly and
nonlinearly while clocking the generator. These state update functions
also depend on the internal state of the registers, which perform the
so-called self-mutual control. We suggest several attack scenarios based
on the reverse clocking of the generator and analysis of the acquired back-
ward states tree. Furthermore, we show meet-in-the-middle attack can
be applied while simultaneously allowing the generation of shifted key
streams for different pairs of keys and initialization vectors. In practice,
our theoretical results are verified by extensive computations.

Keywords: MICKEY stream cipher, self-mutual control, nonlinear shift
register, backward states tree.

1. IN T R O D U C T I O N

Nonlinear feedback shift registers (NFSRs) prove to be an extremely promis-
ing building block for key-stream generators. Such registers allow efficient
hardware implementation and provide nonlinearity so crucial to the security
of such a generator. However, the behavior of such nonlinear components is
poorly understood, which, in turn, results in a lack of criteria for selecting
parameters that directly affect security. The reason for this poor understand-
ing is the difficulty inherent in the analysis of generators involving NFSRs.

139

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Despite widespread use of nonlinear registers in modern stream ciphers,
security analysis of such constructions is mostly conjectural and lacks formal
estimates and proofs.

Due to the specific application of symmetric ciphers, generators require
a large period and linear complexity of key streams [1]. To achieve this,
designers of stream ciphers often combine linear and nonlinear registers. It
is believed that the linear part should guarantee the required period and
the nonlinear part should increase linear complexity. Moreover, the update
function of both registers may involve the state of the partner register and
implement so-called ’mutual control’. In addition to a secret key, modern
key-stream generators, often incorporate the public initialization value (IV),
which allows the use of the same key for multiple encryptions. Prior to key-
stream generation, the generator is clocked a number of times in a preclock
phase and, provided that the key and IV are not set up directly into the
register states, can also be clocked during key/IV-loading. Design principles
for these modes differ, but in order to achieve the high efficiency in hardware
implementation, the design of these modes are often similar.

The Mutual Irregular Clocking KEYstream generator (MICKEY) is an ex-
ample of the generators described above. In article [2] Hong and Kim noted
that the first version of MICKEY (MICKEY v1) is potentially vulnerable to
time-memory-data (TMD) tradeoff attack [3, 4]. Based on this research, devel-
opers of the current (second) version of MICKEY (MICKEY v2) have modified
the algorithm and shown that the new version of the cipher is resistant to
this type of attack. A different part [2] deals with a comparative analysis of
MICKEY v1’s update function and random function as well as an estimation
of collisions in a transition states graph. We are continuing the research in this
direction and applying a similar technique to MICKEY v2. In addition to em-
ploying a method from [2], our approach allows us to theoretically calculate
the states of whole backward states tree using update functions of registers.
We have thus acquired theoretical results that give us an opportunity to verify
data from [2] in different way. A procedure of generating a backward states
tree results in an encryption key with a complexity lower than exhaustive
search. We also present a new method for generating non-identical pairs of
keys and IVs. These pairs allow us to generate the key streams that are shifted
by predetermined bits. The theoretical results are also confirmed by practical
calculations, and take into account all peculiarities of the most recent version
of MICKEY.

140

State Space Cryptanalysis of the MICKEY Cipher

The paper is organized as follows. Section 2 introduces the general model
of the key-stream generator under analysis and underlines attack scenarios.
The remaining part of the paper contains an illustration of our approach
to stream cipher MICKEY v2 [5, 6], which is in the portfolio of hardware-
oriented eStream ciphers [7]. We begin with the description of MICKEY
in subsection 3.1. Further in subsections 3.2-3.4, we theoretically compute
probabilities of branch points for all possible degrees in the state transition
graph for MICKEY when run in the key-stream generation, preclock and
key/IV-lode modes. The recorded values from practical verification of these
results are presented in subsection 3.5.

2. KE Y-ST R E A M GE N E R AT I O N MO D E L A N D AT TA C K
SC E N A R I O S

There is evidence to show that, in general, cryptanalysis of stream ciphers
for recovering a key is a two-step process. The first step is to retrieve the
initial state of registers based on encrypted data or key stream. However, the
resultant state guarantees recovering messages from one session only, i.e. for
one IV. In most cases, the complexity of this step is very high and often close
to the exhaustive search. In order to gain complete control over the channel it
is necessary to obtain a key. Therefore, an additional attack is performed at
the next stage to recover a key based on the register values from the previous
step. The complexity of this step is usually significantly less than the first one.

An example of such a stage is an attack on the cipher A5/1 [8], which
is implemented in mobile systems of the second generation. The rainbow
attack [9] is performed on the first stage and allows us to obtain the state
after preclock mode. But in order to recover the key, a different type of attack
was developed, a full description of which is provided in [3]. In this paper,
we focus on the second stage. Thus we assume that the state of the registers
is known.

We consider a particular design of a key-stream generator that consists of
two registers (R and S) of length nR and nS with the affine (AI

CR
) and nonlinear

(N I
CS

) update function respectively. We also assume that the concrete state
update function of registers R and S applied at a certain stage is chosen
according to the current state of R and S. This can be seen as self-mutual
control of register clocking. To this end, we define vectorial Boolean functions
fR and fS of nS + nR bits each. The outputs of these functions, which in

141

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Fig. 1: Block Model of a Self-Mutual Key Generator

general consist of a few bits, are denoted by cS and cR. Figure 1 shows the
design being analyzed in this paper. We also assume that the key and IV
are inserted bit-by-bit into the key-stream generator run in the key/IV-load
modes (meaning that this bit, denoted I in Figure 1, in some way affects the
state update function). The generator is run in the following way: IV-load, key-
load, preclock and key-stream generation. The initial state of the generator is
always set to a constant.

The considered key-stream generator run in a key-stream generation mode
can be seen as an autonomous finite state machine and, thus, the period of
the produced output cannot exceed the state space size, i.e. 2nR+nS . However,
even if both registers are nonsingular, the way they are updated results in
self-mutual control which may cause them to behave in a singular fashion
individually, exhibiting orphan states (states with no predecessors) and branch
point states. This indicates a reduction in period (since in the maximum
period, all states are connected into a full cycle that has no orphan states
or branch points). Moreover, analysis of the transitions graph implies many
other interesting properties crucial for security and helpful in cryptanalysis.
In what follows, by the degree of a branch point we understand the number of
incoming edges to the branching node in the state transition graph.

In the first scenario, assume that an attacker, in some way, knows the
internal state of the key-stream generator at some stage during preclock or
key-stream generation and knows exactly how many steps the generator
was stepped to end up in this state. Then the generator is stepped back
appropriately to stop right before preclock (i.e., right after key/IV-load). In

142

State Space Cryptanalysis of the MICKEY Cipher

this process, the generator behaves as an autonomous finite state machine
with a few options for the preceding state. It is necessary to consider how
many candidate states we end up with. This number is equal to the number of
leaves in the top level of the tree that represents state transitions (backwards
states tree). Amazingly enough, some key-stream generators demonstrate
only polynomial growth in the number of leaves contained in each level of
the tree (as opposed to the exponential growth demonstrated, for instance,
in the full binary tree). This allows us to perform computations stepping
several hundred clocks backwards. Obviously, the crucial characteristic of the
transition tree is the average branch number, which is defined by probabilities
of branch points of different degrees. Clearly, if the expected value is close to
1, then the tree will grow much slower than 2n.

In the second scenario, we assume that the attacker learns the internal
state of the key-stream generator at some stage during key-load (preceding
preclock) and knows exactly how many steps the generator was stepped to
end up in this state. Here, while clocking the generator backwards, we have
additional uncertainty in the key-bit that affects the state update function.
Branch points in the corresponding tree have a higher degree, and edges
are labeled with the appropriate value of the key-bit. Hence, elimination of
orphan states can lead to the unique identification of key bits.

The second scenario can be extended as follows. Assume that the attacker
learns the internal state of the key-stream generator after only a few steps
after the generator has been run in the key-load mode. This number of steps
should be small enough to roll back the generator to the beginning of the
key-load (end of the IV-load). However, by knowing the initial state of the
generator and the IV, it is possible to step the generator forward to the same
point at the beginning of the key-load. Therefore, only one path in the tree will
correspond to the real state update chain, and this will reveal the portion of
the key involved. Furthermore, it is also possible to use a meet-in-the-middle
attack attack in which a certain portion of initial key bits is checked using
brute force and the following bits are recovered using backward clocking in
the key-load. At the "meeting point", the generator should acquire the same
internal state. This criterion is used for eliminating incorrect keys.

143

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

3. AP P L I C AT I O N TO MICKEY

The state space of MICKEY includes branch points and orphan states, which
is a consequence of the self-mutual control used in the design of the cipher.
Assuming a randomly chosen state, it is fairly straightforward to express
the probabilities of this state being 1, but it gives no information about the
distribution of the states in the whole graph. Therefore, the following four
sections show how to find the fraction of the backward states tree based on
the probability of branches appearing.

3 .1 . BR I E F DE S C R I P T I O N O F MICKEY

There are two versions of the cipher MICKEY-80 v2 and MICKEY-128 v2 [5, 6].
Each of them takes two input parameters: initialization vector (IV) and session
key (K). The general architecture of the design is shown in Figure 2.

Fig. 2: Clocking Architecture of the MICKEY Cipher

Both versions are based on a combination of linear (R) and nonlinear (S)
registers with length RL, which is shown in Table 1. Cells of registers have
bit values denoted by r0, r1, . . . , rRL−1 and s0, s1, . . . , sRL−1. Both registers,
R and S, are clocked in two different ways depending on the control bit
CB_R = CB_SL⊕ CB_RR for R and CB_S = CB_SR⊕ CB_RL for S respec-
tively, where CB_XY means a certain bit of the X register from Table 1 (for
example, CB_SL = s34). The update function of registers has an additional

144

State Space Cryptanalysis of the MICKEY Cipher

Table 1: Parameters of the Ciphers MICKEY-80 v2 and MICKEY-128 v2

Version RL Key length Preclock length CB_SL CB_SR CB_SM CB_RL CB_RR
80 100 80 100 34 67 50 33 67

128 160 128 160 54 106 80 53 106

input parameter the so-called input bit (IB_S and IB_R). The difference in
parameters of MICKEY-80 v2 and MICKEY-128 v2 is described in Table 1.
As can be seen from the table, the ratio of the register length to the other
parameters is almost the same for both versions of MICKEY. Nonetheless, the
state spaces for MICKEY-80 v2 and MICKEY-128 v2 differ significantly, as
will be shown later.

According to the terminology accepted in section 2, vectorial Boolean
functions for MICKEY are defined by fR = CB_SR⊕ CB_RL, fS = CB_SL⊕
CB_RR and update functions by AI

CR
= CLOCK_R, N I

CS
= CLOCK_S, where

CLOCK_R, CLOCK_S are registers’ R and S update functions for the cipher
MICKEY respectively. The length of registers is identical and equals ns =
nr = RL.

The cipher runs in the following way:

• initialise the registers R and S with all zeros;

• IV-load (this mode corresponds to CLOCK_K_IV function);

• key-load (CLOCK_K_IV);

• preclock (CLOCK_PRECLOCK);

• key-stream generation (CLOCK_KG).

All modes except key-stream generation work in so-called mix mode. This
means that the input bit of the register R depends on a certain bit of the
register S, and is denoted by CB_SM. The update clocking function of the key
generator (CLOCK_KG(R, S, MIXING, INPUT_BIT), where INPUT_BIT is
bit of key or IV) is shown in Algorithm 1.

As already noted in section 2, it is assumed that the adversary knows the
state of the registers R and S. Our evaluation of the MICKEY cipher resistance
is based on the construction of a backward states tree, as described in detail
for A5/1 in [8]. A brief description of the tree construction with respect to
the MICKEY cipher is presented below.

The previous states are computed using the functions CLOCK_PRECLOCK−1,
CLOCK_K_IV−1 and CLOCK_KG−1, which are inverse to the clock functions

145

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Algorithm 1 CLOCK_KG

Input: registers R and S, MIXING and INPUT_BIT
Output: updated states of registers R and S
CB_R = CB_SL ⊕ CB_RR
CB_S = CB_SR ⊕ CB_RL
if MIXING = TRUE then

IB_R = INPUT_BIT ⊕ CB_SM;
else

IB_R = INPUT_BIT
end if
IB_S = INPUT_BIT
CLOCK_R(R, IB_R, CB_R)
CLOCK_S(S, IB_S, CB_S)

of MICKEY. The algorithm for achieving reverse states results in an exhaus-
tive search for all possible values of input parameters (input, control and
feedback bits for both registers) and the elimination of states with impossible
conditions. Algorithms of function CLOCK_X−1(R, S) for MICKEY-80 v2 are
given in Appendix A.

It is worth noting that the previous state is not always uniquely determined.
The number of branches may vary, depending on the state and mode of the
cipher. Three different backward states trees can be acquired for different
modes. Any of these trees can be considered as a graph of state transitions of
finite-state machines. The general structure of the tree is shown in Figure 3.
Hereinafter we will refer to such concepts connected to a tree as: the level is
the set of all backward states that may result in an original state after a certain
number of clocks; the degree of branch is the number of possible previous
states, which give R and S after one clock forward. In K/IV load mode, edges
are labeled with the appropriate bit of the sought-for key.

3 .2 . KE Y-ST R E A M GE N E R AT I O N MO D E

Let ρ
0

and ρ
1

denote the two predecessors of the R-register by applying the
inverses of the two different transition matrices [10]. Similarly, let σ0 and σ1
denote the two predecessors of the S-register by applying the inverses of the
two different nonlinear register update function. The register self-control is
obtained from two taps of both registers. These taps’ indices are denoted
by c and a, and the corresponding predecessor state bits are denoted by ρ0,c,

146

State Space Cryptanalysis of the MICKEY Cipher

level n • •

level 2 • . . . • . . . • . . . •

level 1 •

ii [[

. . . •

CC 55

level 0 •

[[CC

Fig. 3: A Backward States Tree

ρ1,c, ρ0,a, ρ1,a, and σ0,c, σ1,c, σ0,a, σ1,a. The register control signals are denoted
by Rctrlij and Sctrlij where ij is an index indicating the state pair (ρ

i
, σj)

from which they are derived. From the definition of the MICKEY ciphers the
following relations between the register control signals and the predecessor
state bits are evident.

(Rctrl00, Sctrl00) = (ρ0,c + σ0,a, ρ0,a + σ0,c)

(Rctrl10, Sctrl10) = (ρ1,c + σ0,a, ρ1,a + σ0,c)

(Rctrl01, Sctrl01) = (ρ0,c + σ1,a, ρ0,a + σ1,c)

(Rctrl11, Sctrl11) = (ρ1,c + σ1,a, ρ1,a + σ1,c)

From the above equations it is easy to see that the 28 values for the 8 prede-
cessor state bits result in 64 distinct values of the 8 Rctrl and Sctrl control
signals. Out of these 64 combinations, 21 give rise to orphan states (BP0), 24
to regular states (BP1), 18 to states with 2 predecessors (BP2), and 1 to states
with four predecessors (BP4). None of the 64 values gives rise to states with
three predecessors (BP3).

Branch points with four predecessors have the following control signals:
Rctrl00 = 0, Sctrl00 = 0, Rctrl01 = 0, Sctrl01 = 1, Rctrl10 = 1, Sctrl10 = 0,
Rctrl11 = 1, and Sctrl11 = 1. These conditions result in the following six
conditions on the values of the corresponding predecessor state bits.

(ρ0,c = σ0,a) ∧ (ρ0,a = σ0,c)

(ρ1,c = 1 + σ0,a) ∧ (ρ1,a = σ0,c)

(σ0,a = σ1,a) ∧ (σ0,c = 1 + σ1,c)

147

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

If we assume a random R-register fill, then, due to the linearity of the R-
register, the probabilities of all 16 combinations of the 4 ρ bits are equal to 1

16 .
As branch points in the S-register can only occur if the most significant state
bit has value 1, we arrive at the following expression for the probability of a
branch point state with four predecessors.

Pr(BP4) =
1
2
· 1

16
Pr((σ0,a = σ1,a) ∧

(σ0,c = 1 + σ1,c)) (1)

Assuming a random S-register fill, the values are Pr(BP4) = 0.00819, 0.00835,
0.00856, 0.00885, for MICKEY-80 v1, -80 v2, -128 v1, -128 v2, respectively. These
values have been calculated using a method described in Section 3 of [10].

In the same way the probability of other state types can be calculated. For
orphan states (BP0) we find

Pr(BP0) = 1
2 ·

1
16 ·

(4Pr((σ0,a = σ1,a) ∧ (σ0,c = σ1,c)) +

9Pr((σ0,a = σ1,a) ∧ (σ0,c = 1 + σ1,c)) +

4Pr((σ0,a = 1 + σ1,a) ∧ (σ0,c = σ1,c)) +

4Pr((σ0,a = 1 + σ1,a) ∧ (σ0,c = 1 + σ1,c))). (2)

From expressions (1) and (2) one obtains

Pr(BP0) =
1
8
+ 5Pr(BP4). (3)

Carrying on in the same way, the probabilities of BP1 and BP2 are obtained

Pr(BP1) =
1
4
− 8Pr(BP4) (4)

Pr(BP2) =
1
8
+ 2Pr(BP4). (5)

The sum of all probabilities is equal to one half, because we have considered
only the S-register states with msb equal to 1. S-register states with msb equal
to 0, give rise to singularities in the R-register only. Again due to the linearity
of the R-register, the probabilities of the three kinds of R-register states (BP0,

148

State Space Cryptanalysis of the MICKEY Cipher

BP1, and BP2) are equal to 1
8 , 1

4 , and 1
8 respectively. The overall probabilities

are given below.

Pr(BP0) =
1
4
+ 5Pr(BP4) (6)

Pr(BP1) =
1
2
− 8Pr(BP4) (7)

Pr(BP2) =
1
4
+ 2Pr(BP4) (8)

From the above expression for the state probabilities, it is seen that the average
number of predecessor states equals 1, regardless of Pr(BP4). The variance
is given by Var = 1

2 + 16Pr(BP4), which is less than one (≈ 0.63) for all
MICKEY versions.

3 .3 . PR E C L O C K MO D E

In preclock mode the MICKEY cipher has an additional modifier signal from
the tap with index N/2 of the nonlinear S-register to the input of the R-
register. In line with Section 3.2, we write σ0,N/2 and σ0,N/2 for the bits of
σ0 and σ1 with index N/2. Consequently, this S-register tap modifies the R-
register by xor-ing the tap value to the feedback bit of the R-register. Therefore,
if there is a 1 value at the appropriate locations c or a of the feedback vector
of the R-register, this will modify the control tap values of the R-register,
thereby possibly changing the branch point conditions. It turns out that,
depending only on the value of the feedback vector bits of the R-register, the
cycle structure of preclock mode is either equivalent to that of the key-stream
generation mode, or its cycle structure changes to include branch points
with three predecessors having different probabilities of occurrence from the
key-stream generation mode. The latter case is dealt with in this section. It
should be remarked that MICKEY-80 v2 is the only version having preclock
mode cycle structures equivalent to the key-stream generation mode, all other
versions have exhibiting branch points with three predecessors.

Omitting the details of the calculations, the following results apply

Pr(BP4) = 1
2 ·

1
16 Pr((σ0,a = σ1,a) ∧

(σ0,c = 1 + σ1,c) ∧ (σ0,N/2 = σ1,N/2)) (9)

Pr(BP3) = 1
2 ·

1
16 Pr((σ0,a = σ1,a) ∧

(σ0,N/2 = 1 + σ1,N/2)). (10)

149

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Again assuming random register fills, the values are Pr(BP4) ≈ 0.0027 and
Pr(BP3) ≈ 0.019. Note from (9) that Pr(BP4) in preclock mode is less than in
the key-stream generation mode. As with the key-stream generation mode,
the probabilities of the other state types can be expressed in Pr(BP4) and
Pr(BP3), resulting in the expressions below.

Pr(BP0) = 1
4 + Pr(BP3) + 5Pr(BP4) (11)

Pr(BP1) = 1
2 − Pr(BP3)− 8Pr(BP4) (12)

Pr(BP2) = 1
4 − Pr(BP3) + 2Pr(BP4) (13)

From the above expressions for the state probabilities, it is again seen that
the average number of predecessor states equals 1, regardless of Pr(BP4) and
Pr(BP3). The variance is given by Var = 1

2 + 4Pr(BP3) + 16Pr(BP4), which
is less than one for all MICKEY versions.

3 .4 . KE Y/IV LO A D MO D E

Loading key and IV bits into the MICKEY ciphers is realized in mix mode, by
shifting in key and IV bits in both registers in parallel. The structure of the
state space in this mode can be adapted to include the uncertainty about the
values of the key bits, when attempting to step backwards in the state space.
This adaptation consists of taking into account branch points arising from one
or more states leading to one next state when using two different values for
the key bit input. In general, the number of possible predecessors doubles in
this model, ranging from 0 (orphan states) through 8 (branch points with four
predecessors for both values of the key bit). We will refer to this model as the
compound state space. The compound state space can be viewed as the union
of the state spaces for all combinations of key bit values. For the MICKEY
ciphers there are two different compound state spaces, in a similar way as
explained for preclock mode. In this respect, MICKEY-80 v2 is different from
the other published versions. For example, MICKEY-80 v2 has no branch
points with five and seven predecessors.

Let us denote the probability that a randomly chosen state has i predeces-
sors for a key bit of value k and j predecessors for a key bit of value k⊕ 1 by
Pij. Then from symmetry arguments, Pij = Pji. For MICKEY-80 v2, P04 = 0,
P14 = 0, and P12 = P01. the probabilities of all nonzero state types can be

150

State Space Cryptanalysis of the MICKEY Cipher

Table 2: State type probabilities for the compound state space model of the MICKEY-80 v2 in
Key/IV Load Mode. State type n-m means a state with n predecessor states for a key
bit with value 0, and with m predecessor states for a key bit with value 1.

State type 80 v2
0 0.32
1 1.1 · 10−4

2 0.39
3 1.1 · 10−4

4 0.28
6 1.1 · 10−5

8 0.014

expressed in four of them, i.e. P02, P22, P24, and P44, obtaining the expressions
below for states with nonzero probabilities.

P00 = P22 + 4P24 + 3P44 (14)

P01 =
1
4
− P02 − P22 + P24 + 2P44 (15)

P11 = 2P02 + 2P22 − 10P24 − 12P44 (16)

(17)

The probabilities of the various state types in both models have been de-
termined by calculations and verified by experiments. The results are given
in Table 2, showing the differences in the two compound state spaces. The
average number of predecessors is two in both cases, one for each key bit
value. The variances are significantly different: Var ≈ 2.88 for MICKEY-80
v2, and Var ≈ 0.89 for the other MICKEY ciphers., indicating that stepping
backwards is harder for MICKEY-80 v2 than for the other MICKEY ciphers.

Of interest is the probability of a state being an orphan for one key bit
value and a state with one or more predecessors for the complement of the
key bit value. In this case, the uncertainty in the key bit value is resolved, and
therefore, the total uncertainty in the key is reduced by one bit. In the case of
MICKEY-80 v2, however, this probability is very small (≈ 3 · 10−4).

3 .5 . CO M P U TAT I O N A L RE S U LT S

The tree construction method, described in section 3.1, allows to evaluate
following properties of a finite state machine.

151

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

3.5 .1 . DE G R E E PR O B A B I L I T Y.

The backward tree was constructed by using functions CLOCK_X−1 (Ap-
pendix A). Probabilities of degrees were calculated with accuracy limited by
18-level tree for random and real values of registers R and S. Tables 3 and 4
show the difference in the degree probability distribution for different initial
values and modes.

Table 3: The Degree Probability for Random Initial States.

Degree
Key/IV load Preclock KG

80 v2 128 v2 80 v2 128 v2 80 v2 128 v2
0 0.2982 0.198 0.2802 0.2825 0.3014 0.2718
1 0.00009 0.1031 0.4377 0.459 0.4052 0.4281
2 0.4229 0.4022 0.2735 0.2294 0.2844 0.29
3 0.0001 0.1087 - 0.0256 - -
4 0.2698 0.1703 0.0085 0.0035 0.0090 0.0101
6 0.00001 0.0177 - - - -
8 0.0089 - - - - -

Table 4: The Degree Probability for Real Initial States.

Degree
Key/IV load Preclock mode KG

80 v2 128 v2 80 v2 128 v2 80 v2 128 v2
0 0.2773 0.2186 0.3052 0.29 0.3041 0.3038
1 0.00001 0.1047 0.4345 0.4534 0.4323 0.4154
2 0.4331 0.3753 0.2523 0.2256 0.2558 0.2698
3 0.00002 0.1029 - 0.0289 - -
4 0.28 0.1783 0.008 0.0021 0.0079 0.0111
6 0.00007 0.0203 - - - -
8 0.0095 - - - - -

The results for real and random points approximately coincide with the
theoretical ones from Table 2. Thus, the degree determination method de-
scribed in subsections 3.2-3.4 could be applied to a stream cipher with the
structure given in section 2 at the designing stage.

In key/IV load mode the expectation value of branch points degree for
all versions approximately equals 2. Appropriate value for preclock and KG
mode is approximately equal to 1. Thus, no matter in what mode the values
of the registers were obtained. It is always possible to perform reverse steps
and acquire the state after key initialization function.

152

State Space Cryptanalysis of the MICKEY Cipher

Table 5 shows the average number of possible states at each level. For
reducing the dependency on the initial state 1000 transformations with ran-
dom values was performed. The results for the other modes are given in
Appendix B. Clearly, the number of states increases in accordance with the
expectation value.
Table 5: The Number of Backward States Depending on the Level of a Tree in the Key Load

Mode.

Level
Number of states
80 v2 128 v2

0 1 1
1 3 3
2 9 7
3 25 18
4 45 39
5 143 82
6 247 171
7 523 347
8 1183 703
9 2221 1435

10 5075 2904
11 9453 5849
12 18694 11834
13 37702 23801
14 70675 47759
15 136867 95716

3.5 .2 . DE T E R M I N AT I O N O F KE Y B I T S BA S E D O N A BA C K WA R D

STAT E S TR E E .

Each reverse step increases the probability of subtree cutting off with all
previous states. This property exists since there is a high probability of
orphan states (see Table 4). Therefore a key bit could be found uniquely. An
example of that situation is shown in Table 6.

For MICKEY-128 v2 the key bit can be uniquely determined at levels 1
and 3 ("1" and "0" bits respectively). However, knowing this information

153

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 6: The Probability Distribution of Key Bits on a 5-level Backward Tree.

Level
Probability

80 v2 128 v2
1 0 1 0

1 0.5 0.5 1 0
2 0.5 0.5 0.5 0.5
3 0.5 0.5 0 1
4 0.5 0.5 0.5 0.5
5 0.4857 0.5143 0.5 0.5

does not allow attacker to definitively find the backward state. Therefore,
the knowledge of key bit value does not reduce the tree of states and the
complexity of determining all bits of the key. Moreover, an opportunity of
finding the key bit directly depends on an initial state. For instance, for
MICKEY-80 v2 it is impossible to determine the key bits with probability 1.

3 .5 .3 . ID E N T I C A L KE Y-ST R E A M S F O R D I F F E R E N T KE Y/IV PA I R S .

Functions used for different modes of the MICKEY cipher allow to generate
key-streams shifted by some bits for different pairs of key and IV.

Let zh
i be ith bit of a key-stream for hth pair of (Kh, IVh). Suppose also that

K1 = {k0, k1, . . . , kn−1}, where n the length of the key (Table 1). Then it is
possible to find such (K1, IV1) and (K2, IV2) for which the states of registers
will differ by one clock and the key-streams have the property z2

i = z1
i+1.

Assume that IV1 =
{

iv0, iv1, . . . , ivj
}

, IV2 =
{

iv0, iv1, . . . , ivj, k0
}

and

K2 = K1 << 1 = {k1, k2, . . . , kn−1, 0} . (18)

The relative placement of bits for various sets of K/IV is shown in Table 7.

Table 7: Differences between parameters for various sets of key and IV

IV1 K1 Preclock Key-Stream Generation
iv0 iv1 . . . ivj k0 k1 k2 . . . kn−2 kn−1 0 0 0 . . . 0 0 0 0 0 . . .

iv0 iv1 . . . ivj k0 k1 k2 . . . kn−2 kn−1 0 0 0 . . . 0 0 0 0 0 . . .
IV2 K2 Preclock Key-Stream Generation

154

State Space Cryptanalysis of the MICKEY Cipher

Fig. 4: Meet-in-the-middle attack on the cipher MICKEY

Obviously, the state of registers will differ only by one step. Therefore, the
key-stream will have the same properties, i.e. z2

i = z1
i+1. Since preclock mode

is equivalent to key/IV mode, when input bit is 0, then the MICKEY cipher
has shifting feature. Only one condition is a necessity: the s1

50 bit must equal
0 at the moment of changing between preclock and key-stream generation
modes.

The quantity of IV2 bits can be increased by different value. As a result, K2
and a key-stream will be shifted to the same amount of bits.

Similar arguments can be applied to 128-bit version of MICKEY. Examples
of (K1, IV1) and (K2, IV2) with the described property for both versions of
the cipher are given in Appendix C.

3 .5 .4 . ME E T- I N -TH E -M I D D L E AT TA C K O N C I P H E R MICKEY.

The extension of the scenario 2 described in section 2 allows to apply "meet-
in-the-middle" attack, which reduces the complexity of finding the key in
significant way. Suppose the state of the registers after k-clocks from IV
initialization be known. Clearly, k-clocks correspond to k bits of the unknown
key. The general scheme with 3-stages of the attack is shown in Fig. 4.

At the first stage calculate input state for initialization key function using
the IV value. For obtained state find all possible states for k

2 key bits, applying
CLOCK_K_IV function. At the second stage build the backward states tree up
to k

2 level using CLOCK_K_IV−1 . Finally, find coincidences in states acquired
at the previous stages.

155

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

The complexity of exhaustive search attack or building of backward states
tree is approximately the same and equals 2k. Combination of these two
methods in meet-in-the-middle attack makes it more practical and leads to
the complexity:

Od(k) + Oi(k) + O f (k) = 2
k
2 + 2

k
2 + 2

k
2 ≈ 2

k
2+2

where Od(k) is the complexity of exhaustive search for k
2 key bits, Oi(k) is the

complexity of the backward states tree construction and O f (k) is the search
complexity using hash tables [11].

4. CO N C L U S I O N S

In this article the analysis of self-controlled key-stream generators based on
the MICKEY cipher was made. Stepping backwards in the state space of the
cipher is possible and feasible in all modes including key/IV load mode. In
mix mode the overall structure of the state space depends only on one or two
bits in the feedback vector of the linear R-register.

From our analysis we conclude that the 128 bit versions are equally strong
as the 80 bit version 2 cipher, and that the first 80 bit version is substantially
weaker with an effective key length of 50 bits. This difference could have
easily been avoided by a minor change in the feedback vector of the R-register.
It is unknown to the authors if the MICKEY designers were aware of this fact
when designing the MICKEY ciphers.

Proposed method allows to estimate degrees’ probability at the design
stage of MICKEY-like ciphers, and this was proved by practical results. Thus,
it is possible to justify the choice of the encryption algorithm parameters.

RE F E R E N C E S

[1] Rueppel, R. A.: Analysis and Design of Stream Ciphers. Communications
and Control Engineering Series. Springer Berlin Heidelberg, 1986.

[2] Hong, J., Kim, W.-H.: TMD-tradeoff and state entropy loss considera-
tions of streamcipher MICKEY. In Maitra, S., Veni Madhavan, C.,
Venkatesan, R. (eds.), Progress in Cryptology - INDOCRYPT 2005, vol.
3797 of Lecture Notes in Computer Science, pp. 169–182. Springer Berlin
Heidelberg, 2005.

156

State Space Cryptanalysis of the MICKEY Cipher

[3] Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs
for stream ciphers. In Okamoto, T. (ed.), Advances in Cryptology —
ASIACRYPT 2000, vol. 1976 of Lecture Notes in Computer Science, pp. 1–13.
Springer Berlin Heidelberg, 2000.

[4] Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of
A5/1 on a PC. In Goos, G., Hartmanis, J., van Leeuwen, J.,
Schneier, B. (eds.), Fast Software Encryption, vol. 1978 of Lecture Notes
in Computer Science, pp. 1–18. Springer Berlin Heidelberg, 2001.

[5] Babbage, S., Dodd, M.: The stream cipher MICKEY 2.0. A eS-
TREAM Portfolio Stream Cipher, 2006. http://www.ecrypt.eu.org/

stream/p3ciphers/mickey/mickey_p3.pdf.

[6] Babbage, S., Dodd, M.: The stream cipher MICKEY-128 2.0. A
eSTREAM Portfolio Stream Cipher, 2006. http://www.ecrypt.eu.org/

stream/p2ciphers/mickey128/mickey128_p2.pdf.

[7] Robshaw, M. J. B., Billet, O. (eds.): New stream cipher designs - The
eSTREAM finalists, vol. 4986 of Lecture Notes in Computer Science. Springer,
2008.

[8] Golić, J.: Cryptanalysis of alleged A5 stream cipher. In Fumy, W. (ed.),
Advances in Cryptology — EUROCRYPT ’97, vol. 1233 of Lecture Notes in
Computer Science, pp. 239–255. Springer Berlin Heidelberg, 1997.

[9] Stevenson, F.: A5/1 decryption. Electronic source, 2013. https://

opensource.srlabs.de/projects/a51-decrypt/wiki/Wiki/history.

[10] Jansen, C.: The state space structure of the MICKEY stream cipher.
Proceedings of the 32rd WIC Symposium on Information Theory in the Benelux
and The 1st Joint WIC/IEEE Symposium on Information Theory and Signal
Processing in the Benelux, 2011.

[11] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., et al.:
Introduction to algorithms, vol. 2. MIT press Cambridge, 2001.

157

http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/mickey128/mickey128_p2.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/mickey128/mickey128_p2.pdf
https://opensource.srlabs.de/projects/a51-decrypt/wiki/Wiki/history
https://opensource.srlabs.de/projects/a51-decrypt/wiki/Wiki/history

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

A. DE S C R I P T I O N O F IN V E R S E FU N C T I O N S

A.1. AL G O R I T H M O F CLOCK S−1

The algorithm for finding previous states of S register of cipher MICKEY-80
v2.

Algorithm 2 CLOCK_S−1

Input: bits IB_S, CB_S, FB_S and register S
Output: TRUE if branch exist, otherwise FALSE
S
′ ← S

if FB_S = TRUE then
if CB_S = TRUE then

for i=0 to 99 do
ŝi ← s

′
i⊕ FB1i;

end for
else

for i=0 to 99 do
ŝi ← s

′
i⊕ FB0i;

end for
end if

else
for i=0 to 99 do

ŝi ← s
′
i;

end for
end if
if ŝ0 6= 0 then

return FALSE
end if
s99 ← FB_S ⊕ IB_S;
s98 ← ŝ99;
for i=98 to 1 do

si−1 ← ŝi ⊕ ((si ⊕ COMP0i) ∧ (si+1 ⊕ COMP1i));
end for
return TRUE

158

State Space Cryptanalysis of the MICKEY Cipher

A.2. AL G O R I T H M O F CLOCK R−1

The algorithm for finding previous states of R register of cipher MICKEY-80
v2.

Algorithm 3 CLOCK_R−1

Input: bits IB_R, CB_R, FB_R and register R
Output: TRUE if brach exist, otherwise FALSE
R
′ ← R

if CB_R = TRUE then
r0 ← r0 ⊕ (FB_R ∧ RTAPS0);
for i=1 to 99 do

ri ← ri ⊕ ri−1 ⊕ (FB_R ∧ RTAPSi);
end for
if r99 6= (FB_R ⊕ IB_R) then

return FALSE
end if

else
if (r0 ⊕ (FB_R ∧ RTAPS0)) 6= 0 then

return FALSE
end if
for i=1 to 99 do

ri−1 ← ri ⊕ (FB_R ∧ RTAPSi);
end for
r99 ← FB_R ⊕ IB_R;

end if
return TRUE

A.3 . AL G O R I T H M O F CLOCK K IV−1

The algorithm for finding previous states in the K/IV mode of cipher MICKEY-
80 v2.

Algorithm 4 CLOCK_K_IV−1

Input: registers R and S
Output: all possible branches
branches← Ø
for s = 0 to 64 do

FB_S← (s� 0) ∧ 1;
IB_S← (s� 1) ∧ 1;
CB_S← (s� 2) ∧ 1;
FB_R← (s� 3) ∧ 1;
IB_R← (s� 4) ∧ 1;
CB_R← (s� 5) ∧ 1;
TS← S;
TR← R;
if CLOCK_S−1(TS,IB_S,CB_S,FB_S) 6= TRUE then

continue;
end if
if CLOCK_R−1(TR,IB_R,CB_R,FB_R) 6= TRUE then

continue;
end if
INPUT_BIT_S← IB_S;
INPUT_BIT_R← IB_S ⊕s50;
CONTROL_BIT_R← s34 ⊕ r67;
CONTROL_BIT_S← s67 ⊕ s33;
if CONTROL_BIT_R = CB_R and CONTROL_BIT_S = CB_S and IN-
PUT_BIT_R = IB_R then

branches← Append(branches,[TS;TR;INPUT_BIT_S]);
end if

end for
return branches

159

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

A.4. AL G O R I T H M O F CLOCK PRECLOCK−1

The algorithm for finding previous states in the preclock mode of cipher
MICKEY-80 v2.

Algorithm 5 CLOCK_PRECLOCK−1

Input: registers R and S
Output: all possible branches
branches← Ø
for s = 0 to 32 do

FB_S← (s� 0) ∧ 1;
CB_S← (s� 1) ∧ 1;
FB_R← (s� 2) ∧ 1;
IB_R← (s� 3) ∧ 1;
CB_R← (s� 4) ∧ 1;
TS← S;
TR← R;
if CLOCK_S−1(TS,0,CB_S,FB_S) 6= TRUE then

continue;
end if
if CLOCK_R−1(TR,IB_R,CB_R,FB_R) 6= TRUE then

continue;
end if
INPUT_BIT_R← s50;
CONTROL_BIT_R← s34 ⊕ r67;
CONTROL_BIT_S← s67 ⊕ s33;
if CONTROL_BIT_R = CB_R and CONTROL_BIT_S = CB_S and IN-
PUT_BIT_R = IB_R then

branches← Append(branches,[TS;TR;0]);
end if

end for
return branches

A.5 . AL G O R I T H M O F CLOCK KG−1

The algorithm for finding previous states in the key-stream generating mode
of cipher MICKEY-80 v2.

Algorithm 6 CLOCK_KG−1

Input: registers R and S
Output: all possible branches
branches← Ø
for s = 0 to 16 do

FB_S← (s� 0) ∧ 1;
CB_S← (s� 1) ∧ 1;
FB_R← (s� 2) ∧ 1;
CB_R← (s� 3) ∧ 1;
TS← S;
TR← R;
if CLOCK_S−1(TS,0,CB_S,FB_S) 6= TRUE then

continue;
end if
if CLOCK_R−1(TR,0,CB_R,FB_R) 6= TRUE then

continue;
end if
CONTROL_BIT_R← s34 ⊕ r67;
CONTROL_BIT_S← s67 ⊕ s33;
if CONTROL_BIT_R = CB_R and CONTROL_BIT_S = CB_S then

branches← Append(branches,[TS;TR;0]);
end if

end for
return branches

160

State Space Cryptanalysis of the MICKEY Cipher

B. TH E NU M B E R O F STAT E S O N EA C H LE V E L O F TH E
BA C K WA R D TR E E

The following tables show the dynamics of increasing the number of states
depending on the quantity of steps taken backward.

Table 8: The Number of Backward States Depending on the Level of a Tree in the Preclock
mode.

Level
Number of states
80 v2 128 v2

0 1 1
1 1 1
2 1 2
3 2 3
4 3 4
5 4 6
6 5 8
7 7 8
8 5 11
9 5 14

10 10 15
11 12 15
12 13 15
.
99 25 30
100 32 27
.
159 - 59
160 - 63

C. EX A M P L E O F KE Y-ST R E A M S W I T H D I F F E R E N T
LE N G T H O F IV

In appendix examples of identical key-streams for different IV length are
described. All values are presented as bytes in hexadecimal notation except
the first and the last values of Zi, which are bits.

161

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 9: The Number of Backward States Depending on the Level of Tree in the Key-stream
Generation Mode.

Level
Number of states
80 v2 128 v2

0 1 1
1 1 2
2 1 3
3 2 4
4 3 6
5 3 6
6 4 4
7 5 3
8 3 4

.
125 17 64
126 17 81
127 16 91
128 20 97

C.1 . MICKEY-80 V2

K1 = {d3, ec, f 0, 84, 8a, 1d, b1, b7, 4a, dd}
IV1 = {58, e5, 77, 0a, 9c, a2, 34, c7, cd, 5e} (79 bits)

K2 = {a7, d9, e1, 09, 14, 3b, 63, 6e, 95, ba}
IV2 = {58, e5, 77, 0a, 9c, a2, 34, c7, cd, 5 f } (80 bits)

Z1 = {0, B7, 61, 27, 92, C5, 85, 91, 51, 18, 2A, D6, 7C, 8C, C8,

C7, 04}
Z2 = {B7, 61, 27, 92, C5, 85, 91, 51, 18, 2A, D6, 7C, 8C, C8,

C7, 04, 1}

C.2. MICKEY-128 V2

K1 = {c9, 55, e7, 7a, 80, 13, 1a, ad, 40, 45, d9, 6c, 71, 04, 97, 9c}

162

State Space Cryptanalysis of the MICKEY Cipher

IV1 = {4e, db, 6e, 01, 05, 98, 2b, 30, c3, 56, 5a, ed, 80, 85,

18, aa} (127 bits)

K2 = {92, ab, ce, f 5, 00, 26, 35, 5a, 80, 8b, b2, d8, e2, 09, 2 f , 38}
IV2 = {4e, db, 6e, 01, 05, 98, 2b, 30, c3, 56, 5a, ed, 80, 85,

18, ab} (128 bits)

Z1 = {0, 79, 23, 91, 05, E1, DD, 2D, 9D, 83, 3E, B4, 78, 52,

E5, A6, 66}
Z2 = {79, 23, 91, 05, E1, DD, 2D, 9D, 83, 3E, B4, 78, 52,

E5, A6, 66, 1}

163

PAPER VII
verification of restricted

ea-equivalence for vectorial

boolean functions
∗

Lilya Budaghyan Oleksandr Kazymyrov

VII

∗Budaghyan, L., Kazymyrov, O.: Verification of restricted EA-equivalence for vectorial
Boolean functions. In Özbudak, F., Rodríguez-Henríquez, F. (eds.), Arithmetic of Finite
Fields, vol. 7369 of Lecture Notes in Computer Science, pp. 108–118. Springer Berlin Heidelberg,
2012.

165

Verification of Restricted EA-equivalence
for Vectorial Boolean Functions
Lilya Budaghyan Oleksandr Kazymyrov

Department of Informatics,
University of Bergen, Norway

{Lilya.Budaghyan,Oleksandr.Kazymyrov}@uib.no

Abstract

We present algorithms for solving the restricted extended affine equiva-
lence (REA-equivalence) problem for any m-dimensional vectorial Boolean
functions in n variables. The best of them has complexity O(22n+1) for
REA-equivalence F(x) = M1 · G(x⊕ V2)⊕M3 · x⊕ V1. The algorithms
are compared with previous effective algorithms for solving the linear
and the affine equivalence problem for permutations by Biryukov et. al [1].

Keywords: EA-equivalence, matrix representation, S-box, vectorial Boolean
function.

1. IN T R O D U C T I O N

Vectorial Boolean functions play very important role in providing high-level
security for modern ciphers. They are used in cryptography as nonlinear com-
bining or filtering functions in the pseudo-random generators (stream ciphers)
and as substitution boxes (S-boxes) providing confusion in block ciphers. Up
to date an important question of generation of vectorial Boolean functions
with optimal characteristics to prevent all known types of attacks remains
open. Sometimes equivalence (i.e. EA or CCZ) is used for achieving necessary
properties without losing other ones (i.e. δ-uniformity, nonlinearity) [2].

But very often inverse problem occurs: it is needed to check several func-
tions for equivalence. For instance, when finding a new vectorial Boolean
function it is necessary to verify whether it is equivalent to already known
ones as it happens with some of block ciphers, where several substitutions are
used, (i.e. ARIA [3] or Kalyna [4, 5]). The complexity of exhaustive search for

checking EA-equivalence for functions from Fn
2 to itself equals O

(
23n2+2n

)
.

167

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Table 1: Best Complexities for Solving REA-equivalence Problem

Restricted EA-equivalence Complexity m G(x) Source

F(x) = M1 · G(M2 · x) O
(
n2 · 2n) m = n Permutation [1]

F(x) = M1 · G(M2 · x⊕V2)⊕V1 O
(
n · 22n) m = n Permutation [1]

F(x) = M1 · G(x⊕V2)⊕V1 O
(
22n+1) m ≥ 1 † Sec. 3

F(x) = M1 · G(x⊕V2)⊕V1 O
(
m · 23n) m ≥ 1 Arbitrary Sec. 3

F(x) = G(M2 · x⊕V2)⊕V1 O (n · 2m) m ≥ 1 Permutation Sec. 3
F(x) = G(x⊕V2)⊕M3 · x⊕V1 O (n · 2n) m ≥ 1 Arbitrary Sec. 3

F(x) = M1 · G(x⊕V2)⊕M3 · x⊕V1 O
(
22n+1) m ≥ 1 ‡ Sec. 3

F(x) = M1 · G(x⊕V2)⊕M3 · x⊕V1 O
(
m · 23n) m ≥ 1 Arbitrary Sec. 3

† - G is under condition {2i | 0 ≤ i ≤ m − 1} ⊂ img(G′) where G′(x) =
G(x) + G(0).
‡ - G is under condition {2i | 0 ≤ i ≤ m− 1} ⊂ img(G′) where G′ is defined
as (4).

When n = 6 the complexity is already 2120 that makes it impossible to perform
exhaustive computing.

In the paper [1] Alex Biryukov et al. have shown that in case when
given functions are permutations of Fn

2 , the complexity of determining REA-
equivalence equals O

(
n2 · 2n) for the case of linear equivalence and O

(
n · 22n)

for affine equivalence. In this paper we consider more general cases of REA-
equivalence for functions from Fn

2 to Fm
2 and specify results, when complexity

can be reduced to polynomial. The complexities of our algorithms and the
best previous known ones are given in Table 1.

2. PR E L I M I N A R I E S

For any positive integers n and m, a function F from Fn
2 to Fm

2 is called
differentially δ-uniform if for every a ∈ Fn

2 \ {0} and every b ∈ Fm
2 , the equation

F(x)+ F(x+ a) = b admits at most δ solutions [6]. Vectorial Boolean functions
used as S-boxes in block ciphers must have low differential uniformity to
allow high resistance to differential cryptanalysis (see [7]). In the important
case when n = m, differentially 2-uniform functions, called almost perfect
nonlinear (APN), are optimal (since for any function δ ≥ 2). The notion of
APN function is closely connected to the notion of almost bent (AB) function

168

Verification of Restricted EA-equivalence for Vectorial Boolean Functions

[8] which can be described in terms of the Walsh transform of a function
F : Fn

2 7→ Fm
2

λ(u, v) = ∑
x∈Fn

2

(−1)v·F(x)+u·x,

where "·" denotes inner products in Fn
2 and Fm

2 , respectively. The set {λ(u, v) |
(u, v) ∈ Fn

2 × Fm
2 , v 6= 0} is called the Walsh spectrum of F and the set ΛF =

{|λ(u, v)| | (u, v) ∈ Fn
2 ×Fm

2 , v 6= 0} the extended Walsh spectrum of F. If n = m
and the Walsh spectrum of F equals {0,±2

n+1
2 } then the function F is called

AB [8]. AB functions exist for n odd only and oppose an optimum resistance
to linear cryptanalysis (see [9]). Every AB function is APN but the converse
is not true in general (see [10] for comprehensive survey on APN and AB
functions).

The natural way of representing F as a function from Fn
2 to Fm

2 is by its
algebraic normal form (ANF):

∑
I⊆{1,...,n}

aI

(
∏
i∈I

xi

)
, aI ∈ Fm

2 ,

(the sum being calculated in Fm
2). The algebraic degree deg(F) of F is the

degree of its ANF. F is called affine if it has algebraic degree at most 1 and it
is called linear if it is affine and F(0) = 0.

Any affine function A : Fn
2 7→ Fm

2 can be represented in matrix form

A(x) = M · x⊕ C, (1)

where M is an m× n matrix and C ∈ Fm
2 . All operations are performed in F2,

thus (1) can be rewritten as


a0
a1
. . .

am−1


x

=


k0,0 · · · k0,n−1
k1,0 · · · k1,n−1

...
. . .

...
km−1,0 · · · km−1,n−1

 ·


x0
x1
. . .

xn−1

⊕


c0
c1
. . .

cm−1


with ai, xi, ci, k j,s ∈ F2.

169

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Two functions F, G : Fn
2 7→ Fm

2 are called extended affine equivalent (EA-
equivalent) if there exist an affine permutation A1 of Fm

2 , an affine permutation
A2 of Fn

2 and a linear function L3 from Fn
2 to Fm

2 such that

F(x) = A1 ◦ G ◦ A2(x) + L3(x).

Clearly A1 and A2 can be presented as A1(x) = L1(x) + c1 and A2(x) =
L2(x) + c2 for some linear permutations L1 and L2 and some c1 ∈ Fm

2 , c2 ∈ Fn
2 .

Definition 1. Functions F and G are called restricted EA-equivalent (REA-equivalent)
if some elements of the set {L1(x), L2(x), L3(x), c1, c2} are in {0, x}.

There are two special cases

• linear equivalence when {L3(x), c1, c2} = {0, 0, 0};

• affine equivalence when L3(x) = 0.

In matrix form EA-equivalence is represented as follows

F(x) = M1 · G(M2 · x⊕V2)⊕M3 · x⊕V1

where elements of {M1, M2, M3, V1, V2} have dimensions {m×m, n× n, m×
n, m, n}.

We say that functions F and F′ from Fn
2 to Fm

2 are CCZ-equivalent if there
exists an affine permutation L of Fn

2 × Fm
2 such that GF = L(GF′) , where

GH = {(x, H(x)) | x ∈ Fn
2}, H ∈ {F, F′}. CCZ-equivalence is the most gen-

eral known equivalence of functions for which differential uniformity and
extended Walsh spectrum are invariants. In particular every function CCZ-
equivalent to an APN (respectively, AB) function is also APN (respectively,
AB). EA-equivalence is a particular case of CCZ-equivalence [11]. The alge-
braic degree of a function is invariant under EA-equivalence but, in general,
it is not preserved by CCZ-equivalence.

3. VE R I F I C AT I O N O F RE S T R I C T E D EA-E Q U I VA L E N C E

Special types of REA-equivalence, which are considered in this paper, are
shown in Table 2.

Hereinafter assume that obtaining the value F(x) for any x takes one
step. Pre-computed values of function F(x), F−1(x) and corresponding sub-
stitutions are used as input for the algorithms. Thereafter, complexity of

170

Verification of Restricted EA-equivalence for Vectorial Boolean Functions

Table 2: Special types of REA-equivalence

REA-equivalence Type
F(x) = M1 · G(x)⊕V1 I
F(x) = G(M2 · x⊕V2) II

F(x) = G(x)⊕M3 · x⊕V1 III
F(x) = M1 · G(x)⊕M3 · x⊕V1 IV

representing functions in needed form is not taken into account, as well as
memory needed for data storage. This assumptions are introduced to be able
to compare complexities of algorithms of the present paper with those of [1]
where the same assumptions were made.

There are 2m·n choices of linear mappings. The complexity of obtaining the
m× n matrix M satisfying the equation

F(x) = M · G(x)

using exhaustive search method is O(2n · 2m·n), where O(2m·n) and O(2n) are
complexities of checking all matrices for all possible x ∈ Fn

2 . Another natural
method is based on system of equations. The complexity in this case depends
only on the largest of the parameters n and m. Indeed, for square matrices we
can benefit from the asymptotically faster Williams method based on system
of equations with complexity O(n2.3727) [12]. Besides, for n ≤ 64 we can use
64-bit processor instructions to bring the complexity to O(n2) because two
rows (columns) can be added in 1 step. Since any system of m equations with
n variables can be considered as a system of k equations with k variables
where k = max{n, m} then the complexity of solving such a system is

µ = O(k2) , (2)

which gives the complexity of finding M by this method.

Proposition 1. Any linear function L : Fn
2 7→ Fm

2 can be converted to a matrix
with the complexity O(n).

Proof. We need to find an m× n matrix M satisfying

L(x) = M · x

171

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Suppose rowsM(i) =
(
mij
)

, ∀j ∈ {0, 1, . . . , n− 1} and colsM(j) =
(
mij
)

, ∀i ∈
{0, 1, . . . , m− 1} are the i-th row and the j-th column of matrix M, respectively.
Each value of x ∈ {2i | 0 ≤ i ≤ n− 1} is equivalent to a vector with 1 at the
i-th row

20 =


1
0

. . .
0

 21 =


0
1

. . .
0

 2n−1 =


0
0

. . .
1

 .

Clearly, every column, except the i-th, becomes zero when multiplying the
matrix M to x = 2i. Hence, each column of matrix M can be computed from

L(2i) = colsM(i), i ∈ {0, 1, . . . , n− 1}.

For finding all columns of M it is necessary to compute n values of L(2i),
0 ≤ i ≤ n− 1. Consequently the complexity of transformation is O(n).

Proposition 2. Let F, G : Fn
2 7→ Fm

2 and G′(x) = G(x)⊕ G(0). Then the com-
plexity of checking F and G for REA-equivalence of type I equals

• O(2n+1) in case when for any i ∈ {0, . . . , m− 1} there exists x ∈ Fn
2 such

that G′(x) = 2i;

• O(m · 22n) in case G is arbitrary.

Proof. Let F′(x) = F(x)⊕ F(0). Then REA-equivalent of type I

F′(x)⊕ F(0) = M1 · G′(x)⊕M1 · G(0)⊕V1

can be rewritten in the following form{
F(0) = M1 · G(0)⊕V1;
F′(x) = M1 · G′(x).

(3)

In case of G(0) = 0 we get V1 = F(0), but in general it’s necessary first to
find M1 from equation F′(x) = M1 · G′(x). If the set {2i | 0 ≤ i ≤ m− 1}
is the subset of the image set of G′, then the problem of finding m × m
matrix M1 is equivalent to the problem of converting linear function to
matrix form with additional testing for all x in Fn

2 . It is possible to find M1

172

Verification of Restricted EA-equivalence for Vectorial Boolean Functions

with the complexity O(m) as was shown in Proposition 1. The complexity
of finding the pre-images of G′ of elements 2i, ∀i ∈ {0, . . . , m − 1} equals
O(2n) as well as the complexity of checking F′(x) = M1 · G′(x) for given
M1. In cryptography, in most cases 2n � m, so the complexity O(m) can be
neglected. Therefore the total complexity of verification for equivalence of F
and G equals O(2n + 2n + m) ≈ O(2n+1).

Let now G be arbitrary and F′(x)i be the i-th bit of F′(x). Denote img(G′)
the image set of G′ and uG′ = |img(G′)| the number of elements of img(G′).
Let also NG′ be any subset of Fn

2 such that |NG′ | = uG′ and |{G′(a)|a ∈
NG′}| = uG′ . Then to find M1 it is necessary to solve a system below for all
i ∈ {0, . . . , m− 1}

F′(xj)i = rowsM1(i) · G
′(xj), ∀xj ∈ NG′ , 0 ≤ j ≤ uG′ − 1⇔

⇔


F′(x0)i = rowsM1(i) · G′(x0);
F′(x1)i = rowsM1(i) · G′(x1);
. . .
F′(xuG′−1)i = rowsM1(i) · G′(xuG′−1).

For every i, i ∈ {0, . . . , m− 1}, the complexity of solving the system highly
depends on uG′ and m and equals O(max{uG′ , m}2) according to (2). Then
the total complexity of finding M1 for all m bits is O(m ·max{uG′ , m}2). If
value uG′ ≈ 2n, then O(m · 22n).

Remark 1. If it is known in advance that functions F and G in Proposition
2 are REA-equivalent of type I, then the complexity of verification F′(x) =
M1 · G′(x) can be ignored and the total complexity for the case {2i | 0 ≤ i ≤
m− 1} ⊂ img(G′) becomes O(2n).

Proposition 3. Let F, G : Fn
2 7→ Fn

2 and G be a permutation. Then the complexity
of checking F and G for REA-equivalence of type II is O(n).

Proof. Denote H(x) = G−1(F(x)). Then the equality F(x) = G(M2 · x⊕V2)
becomes

H(x) = M2 · x⊕V2 .

Taking x = 0 we get V2 = H(0) and the equivalence can be represented as
H′(x) = M2 · x, where H′(x) = H(x)⊕H(0). The method and the complexity
of finding n by n matrix M2 are similar to finding the matrix corresponding
to the linear function. Therefore, the complexity equals O(n).

173

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

Proposition 4. Let F, G : Fn
2 7→ Fm

2 . Then the complexity of checking F and G for
REA-equivalence of type III equals O(n).

Proof. Denote H(x) = F(x)⊕ G(x), then REA-equivalence

F(x) = G(x)⊕M3 · x⊕V1

takes the form

H(x) = M3 · x⊕V1 .

And we have the same situation as in Proposition 3, but with m× n matrix.
Thus the complexity of finding M3 and V1 (or showing its non-existence)
equals O(n).

Every vectorial Boolean function admits the form

H(x) = H′(x)⊕ LH(x)⊕ H(0) , (4)

where LH is a linear function and H′ has terms of algebraic degree at least 2.

Proposition 5. Let F, G : Fn
2 7→ Fm

2 and G′ be defined by (4) for G. Then the
complexity of checking F and G for REA-equivalence of type IV equals

• O(2n+1) in case {2i | 0 ≤ i ≤ m− 1} ⊂ img(G′),

• O(m · 22n) in case G is arbitrary.

Proof. Using (4) REA-equivalence of type IV can be rewritten as

F′(x)⊕ LF(x)⊕ F(0) = M1 · G′(x)⊕M1 · LG(x)⊕M3 · x⊕M1 · G(0)⊕V1

and gives the system of equations
F′(x) = M1 · G′(x);
LF(x) = M1 · LG(x)⊕M3 · x;
F(0) = M1 · G(0)⊕V1.

It’s easy to see that for a given M1 one can easily compute M3 and V1 from
the second and the third equations of the system. The first equation of the
system leads to the two different cases for the function G′ considered in
Proposition 2. Hence, according to Proposition 2, the total complexity for
finding G′ equals O(2n+1) and O(m · 22n), respectively. It should be noted
that the complexity of finding the matrix M3 is not taken into account since
2n+1 � n.

174

Verification of Restricted EA-equivalence for Vectorial Boolean Functions

If we add one of V1, V2 values to REA-equivalence, then the complexity
will increase in 2m or 2n times respectively. REA-equivalance with V1, V2 and
corresponding complexities are shown in Table 1. It should be mentioned
that types I and III of REA-equivalence are particular cases of type IV. But
taking into account different restrictions for the function G it is necessary to
check all these types of EA-equivalence.

The presented methods of verification of REA-equivalence were checked
using the free open source mathematical software system Sage [13]. An
example of a program for the most general case (type IV) of REA-equivalence
in case {2i | 0 ≤ i ≤ m − 1} ⊂ img(G′) is shown in Appendix A. The
corresponding algorithm is presented in Algorithm 7.

Algorithm 7 Checking Functions for REA-equivalence of Type IV

Input: F′(x), LF(x), F(0), G′(x), LG(x), G(0)
Output: True if F is EA-equivalent to G
for V2 = 0 to 2n do

H′(x)← G′(x⊕V2);
LH(x)← LG(x⊕V2);
H(0)← G(V2);
for i = 0 to m− 1 do

x← 2i;
f ind(2i == G(y));
SetColumn(M1,i,H(y));

end for
V1 ← M1 · H(0)⊕ F(0);
for i = 0 to n− 1 do

x← 2i;
SetColumn(M3,i,LF(x)⊕M1 · LH(x));

end for
for i = 0 to 2n − 1 do

if F(x) != M1 · H (x⊕V2)⊕M3 · x⊕V1 then
goto next V2;

end if
end for
return True

end for
return False

175

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

4. CO N C L U S I O N S

The present paper studies complexities of checking functions for special cases
of EA-equivalence and it is shown that for some of this cases the complexity
of checking takes polynomial time. Obtained results give a practical method
for checking functions on equivalence. The best result is with the complexity
O(22n+1) for checking REA-equivalence of the form F(x) = M1 ·G (x⊕V2)⊕
M3 · x⊕V1 under some condition on G.

RE F E R E N C E S

[1] Biryukov, A., De Cannière, C., Braeken, A., Preneel, B.: A tool-
box for cryptanalysis: Linear and affine equivalence algorithms. In
Biham, E. (ed.), Advances in Cryptology — EUROCRYPT 2003, vol. 2656
of Lecture Notes in Computer Science, pp. 33–50. Springer Berlin Heidelberg,
2003.

[2] Daemen, J., Rijmen, V.: The design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer,
2002.

[3] Kwon, D., Kim, J., Park, S., Sung, S., et al.: New block cipher: ARIA.
In Lim, J.-I., Lee, D.-H. (eds.), Information Security and Cryptology - ICISC
2003, vol. 2971 of Lecture Notes in Computer Science, pp. 432–445. Springer
Berlin Heidelberg, 2004.

[4] Gorbenko, I., Dolgov, V., Oliynykov, R., Ruzhentsev, V.: Perspec-
tive symmetric block cipher “Kalyna” – basic statements and specifica-
tion. In Applied Radio Electronics, vol. 6, pp. 195–208. Kharkiv National
University of Radioelectronics, 2007. (In Ukrainian).

[5] Oliynykov, R., Gorbenko, I., Dolgov, V., Ruzhentsev, V.: Results
of Ukrainian national public cryptographic competition. In Tatra Moun-
tains Mathematical Publications, vol. 47, pp. 99–113. Mathematical Institute
of Slovak Academy of Sciences, 2010.

[6] Nyberg, K.: Differentially uniform mappings for cryptography. In
Helleseth, T. (ed.), Advances in Cryptology - EUROCRYPT’93, vol. 765
of Lecture Notes in Computer Science, pp. 55–64. Springer Berlin Heidelberg,
1994.

176

Verification of Restricted EA-equivalence for Vectorial Boolean Functions

[7] Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryp-
tosystems. In Menezes, A., Vanstone, S. (eds.), Advances in Cryptology-
CRYPT0’90, vol. 537 of Lecture Notes in Computer Science, pp. 2–21.
Springer Berlin Heidelberg, 1991.

[8] Chabaud, F., Vaudenay, S.: Links between differential and linear
cryptanalysis. In Advances in Cryptology—EUROCRYPT’94, pp. 356–365.
Springer, 1995.

[9] Matsui, M.: Linear cryptanalysis method for DES cipher. In Helle-
seth, T. (ed.), Advances in Cryptology — EUROCRYPT ’93, vol. 765 of
Lecture Notes in Computer Science, pp. 386–397. Springer Berlin Heidelberg,
1994.

[10] Carlet, C.: Vectorial Boolean functions for cryptography. Boolean Mod-
els and Methods in Mathematics, Computer Science, and Engineering.
Cambridge University Press, 2010.

[11] Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and
permutations suitable for DES-like cryptosystems. In Designs, Codes and
Cryptography, vol. 15, pp. 125–156. Kluwer Academic Publishers, 1998.

[12] Williams, V. V.: Breaking the Coppersmith-Winograd barrier. UC
Berkeley and Stanford University, 2011. http://www.cs.rit.edu/~rlc/

Courses/Algorithms/Papers/matrixMult.pdf.

[13] Stein, W., et al.: Sage mathematics software (version 4.8.2). The Sage
Development Team, 2012. http://www.sagemath.org.

177

http://www.cs.rit.edu/~rlc/Courses/Algorithms/Papers/matrixMult.pdf
http://www.cs.rit.edu/~rlc/Courses/Algorithms/Papers/matrixMult.pdf
http://www.sagemath.org

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

A. SO U R C E CO D E F O R VE R I F I C AT I O N O F
REA-E Q U I VA L E N C E O F TY P E IV

#!/usr/bin/env sage

2
Global variables

4 b i t s =0
length =0

6 k=0
P=0

8
def check_rEA4 (F ,G) :

10 r’’’

Return True if

12 - F(x) = M1 * G(x) + M3 * x + V

- G’(x) is permutation , where G(x) = G’(x) + L_G(x) + G(0)

14 ’’’

M1 = matrix (GF(2) , nrows= b i t s , nco ls= b i t s)
16 M3 = matrix (GF(2) , nrows= b i t s , nco ls= b i t s)

18 polF = F
polG = G

20
V1 = polF . c o n s t a n t _ c o e f f i c i e n t ()

22 V2 = polG . c o n s t a n t _ c o e f f i c i e n t ()

24 polF += V1
polG += V2

26
V1 = V1 . i n t e g e r _ r e p r e s e n t a t i o n ()

28 V2 = V2 . i n t e g e r _ r e p r e s e n t a t i o n ()

30 polFc=polF . c o e f f s ()
polFc += [P ("0") for i in xrange (length−len (polFc))]

32 polGc=polG . c o e f f s ()
polGc += [P ("0") for i in xrange (length−len (polGc))]

34
L1 = zero_vector (length) . list ()

36 L2 = zero_vector (length) . list ()

38 for i in xrange (b i t s) :
if polFc [1<< i] != 0 :

40 L1[1<< i] = polFc [1<< i]
polFc [1<< i] = 0

42
if polGc[1<< i] != 0 :

178

Verification of Restricted EA-equivalence for Vectorial Boolean Functions

44 L2[1<< i] = polGc[1<< i]
polGc[1<< i] = 0

46
L1 = P (L1)

48 L2 = P (L2)
polF = P (polFc)

50 polG = P (polGc)

52 sboxF = range (length)
sboxG = range (length)

54
sboxL1 = [L1 . subs (k (ZZ(i) . d i g i t s (2))) . i n t e g e r _ r e p r e s e n t a t i o n () for i

↪→ in xrange (length)]
56 sboxL2 = [L2 . subs (k (ZZ(i) . d i g i t s (2))) . i n t e g e r _ r e p r e s e n t a t i o n () for i

↪→ in xrange (length)]
sboxF = [polF . subs (k (ZZ(i) . d i g i t s (2))) . i n t e g e r _ r e p r e s e n t a t i o n () for

↪→ i in xrange (length)]
58 sboxG = [polG . subs (k (ZZ(i) . d i g i t s (2))) . i n t e g e r _ r e p r e s e n t a t i o n () for

↪→ i in xrange (length)]

60 sboxFt=sboxF [:]
sboxGt=sboxG [:]

62
if len (set (sboxG) . i n t e r s e c t i o n (set ([2 ^ g for g in xrange (b i t s)]))) !=

↪→ b i t s :
64 #print ">>> sboxG hasn’t all values of {0} <<<".format([2^g for g

↪→ in xrange(bits)])

return None
66

for i in xrange (b i t s) :
68 x=sboxGt . index (1<< i)

M1. set_column (i , ZZ(sboxFt [x]) . d i g i t s (base =2 , padto= b i t s))
70

sboxM = range (length)
72

V = ZZ ((M1∗vector (GF(2) ,ZZ(V2) . d i g i t s (base =2 , padto= b i t s))) . list () , 2)
↪→ ^^ V1

74 for i in xrange (length) :
sboxM [i] = sboxL1 [i] ^^ ZZ ((M1∗vector (GF(2) ,ZZ(sboxL2 [i]) . d i g i t s (

↪→ base =2 , padto= b i t s))) . list () , 2) ^^ V
76

sboxT=sboxM [:]
78

V = vector (GF(2) ,ZZ(sboxT [0]) . d i g i t s (base =2 , padto= b i t s))
80

if sboxT [0] != 0 :
82 sboxT = [g^^sboxT [0] for g in sboxT]

179

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

84 for i in xrange (b i t s) :
x=1<< i

86 M3. set_column (i , ZZ(sboxT [x]) . d i g i t s (base =2 , padto= b i t s))

88 sbox = range (length)

90 sF = [F . subs (k (ZZ(i) . d i g i t s (2))) . i n t e g e r _ r e p r e s e n t a t i o n () for i in

↪→ xrange (length)]
sG = [G. subs (k (ZZ(i) . d i g i t s (2))) . i n t e g e r _ r e p r e s e n t a t i o n () for i in

↪→ xrange (length)]
92

for i in xrange (length) :
94 sbox [i]= vec tor (GF(2) ,ZZ(sG [i]) . d i g i t s (base =2 , padto= b i t s))

96 sbox [i]=M1∗sbox [i]

98 tx=M3∗vector (GF(2) ,ZZ(i) . d i g i t s (base =2 , padto= b i t s))

100 sbox [i]= vec tor (GF(2) , [ZZ(sbox [i] . get (j)) ^^ ZZ(tx . get (j)) ^^ ZZ(V.
↪→ get (j)) for j in xrange (len (sbox [i]))])

102 sbox [i]=ZZ(sbox [i] . list () , 2)

104 if sbox == sF :
return [M1,M3,V]

106 else :
return None

108
def is_EA_equivalent (F ,G, f u n c t i o n s) :

110
for v2 in xrange (length) :

112 polG=G. subs (P ("x+{0}" . format (k (ZZ(v2) . d i g i t s (2))))) .mod(P ("x^{0}+x
↪→ " . format (length)))

114 r e t =check_rEA4 (F , polG)

116 if r e t != None :
M1= r e t [0]

118 M3= r e t [1]
V1= r e t [2]

120 V2=vector (GF(2) ,ZZ(v2) . d i g i t s (base =2 , padto= b i t s))
if f u n c t i o n s == True :

122 return [M1, V1 , V2 ,M3]
else :

124 return True

180

Verification of Restricted EA-equivalence for Vectorial Boolean Functions

126 return Fa lse

128 def main (argv=None) :
global b i t s , length , k , P

130
b i t s =6

132 length=1<< b i t s
k=GF(2^ b i t s , ’a’)

134 P=PolynomialRing (k , ’x’)

136 F=P . random_element (length−1)
G=P . random_element (length−1)

138
Test polynomials for bits=6

140 #G=P("a^63*x^0 + a^61*x^1 + a^23*x^2 + a^39*x^3 + a^15*x^4 + a^21*x

↪→ ^5 + a^57*x^6 + a^37*x^7 + a^3*x^8 + a^23*x^9 + a^26*x^10 + a

↪→ ^40*x^11 + a^48*x^12 + a^26*x^13 + a^51*x^14 + a^43*x^15 + a

↪→ ^32*x^16 + a^13*x^17 + a^33*x^18 + a^48*x^19 + a^36*x^20 + a

↪→ ^1*x^21 + a^11*x^22 + a^40*x^23 + a^42*x^24 + a^62*x^25 + a

↪→ ^11*x^26 + a^22*x^27 + a^5*x^28 + a^6*x^29 + a^59*x^30 + a

↪→ ^10*x^31 + a^51*x^32 + a^4*x^33 + a^13*x^34 + a^63*x^35 + a

↪→ ^54*x^36 + a^26*x^37 + a^58*x^38 + a^39*x^39 + a^53*x^40 + a

↪→ ^34*x^41 + a^28*x^42 + a^27*x^43 + a^40*x^44 + a^25*x^45 + a

↪→ ^10*x^46 + a^58*x^47 + a^30*x^48 + a^34*x^49 + a^35*x^50 + a

↪→ ^49*x^51 + a^53*x^52 + a^35*x^53 + a^49*x^54 + a^7*x^55 + a

↪→ ^55*x^56 + a^39*x^57 + a^53*x^58 + a^29*x^59 + a^52*x^60 + a

↪→ ^45*x^61 + a^9*x^62 + a^26*x^63")

#F=P("a^44*x^0 + a^34*x^1 + a^7*x^2 + a^5*x^3 + a^51*x^4 + a^40*x^5

↪→ + a^27*x^6 + a^23*x^7 + a^28*x^8 + a^63*x^9 + a^20*x^10 + a

↪→ ^38*x^11 + a^12*x^12 + a^16*x^13 + a^18*x^14 + a^39*x^16 + a

↪→ ^53*x^17 + a^62*x^18 + a^17*x^19 + a^50*x^20 + a^13*x^21 + a

↪→ ^15*x^22 + a^29*x^23 + a^33*x^24 + a^12*x^25 + a^22*x^26 + a

↪→ ^49*x^27 + a^7*x^28 + a^43*x^29 + a^28*x^30 + a^53*x^31 + a

↪→ ^5*x^32 + a^59*x^33 + a^22*x^34 + a^26*x^35 + a^45*x^36 + a

↪→ ^39*x^37 + a^49*x^38 + a^9*x^39 + a^58*x^40 + a^13*x^41 + a

↪→ ^14*x^42 + a^43*x^43 + a^61*x^44 + a^38*x^45 + a^10*x^46 + a

↪→ ^9*x^47 + a^25*x^48 + a^44*x^49 + a^30*x^50 + a^12*x^51 + a

↪→ ^16*x^52 + a^24*x^53 + a^56*x^54 + a^3*x^55 + a^40*x^56 + a

↪→ ^23*x^57 + a^49*x^58 + a^39*x^59 + a^58*x^60 + a^11*x^61 + a

↪→ ^55*x^62 + a^29*x^63")

142
print "F\t= {0}" . format (F)

144 print "G\t= {0}" . format (G)

146 r e t =is_EA_equivalent (F ,G, f u n c t i o n s=True)

148 if r e t != Fa l se :

181

Methods and Tools for Analysis of Symmetric Cryptographic Primitives

[M1, V1 , V2 ,M3]= r e t
150 print "EA\t\t\t\t= {0}" . format (True)

print "V1:\n{0}" . format (V1)
152 print "V2:\n{0}" . format (V2)

print "M1:\n{0}" . format (M1)
154 print "M3:\n{0}" . format (M3)

else :
156 print "EA\t\t\t\t= {0}" . format (Fa l se)

158 if __name__ == "__main__" :
sys . e x i t (main ())

182

